BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16583899)

  • 1. Electrophysiologic channel interaction, electrode pitch ranking, and behavioral threshold in straight versus perimodiolar cochlear implant electrode arrays.
    Hughes ML; Abbas PJ
    J Acoust Soc Am; 2006 Mar; 119(3):1538-47. PubMed ID: 16583899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relation between electrophysiologic channel interaction and electrode pitch ranking in cochlear implant recipients.
    Hughes ML; Abbas PJ
    J Acoust Soc Am; 2006 Mar; 119(3):1527-37. PubMed ID: 16583898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear Implantation with the CI512 and CI532 Precurved Electrode Arrays: One-Year Speech Recognition and Intraoperative Thresholds of Electrically Evoked Compound Action Potentials.
    Videhult Pierre P; Eklöf M; Smeds H; Asp F
    Audiol Neurootol; 2019; 24(6):299-308. PubMed ID: 31846976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A re-evaluation of the relation between physiological channel interaction and electrode pitch ranking in cochlear implants.
    Hughes ML
    J Acoust Soc Am; 2008 Nov; 124(5):2711-4. PubMed ID: 19045758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pitch ranking, electrode discrimination, and physiological spread of excitation using current steering in cochlear implants.
    Goehring JL; Neff DL; Baudhuin JL; Hughes ML
    J Acoust Soc Am; 2014 Dec; 136(6):3159. PubMed ID: 25480063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of electrically evoked compound action potential thresholds and loudness estimates for the stimuli used to program the Advanced Bionics cochlear implant.
    Jeon EK; Brown CJ; Etler CP; O'Brien S; Chiou LK; Abbas PJ
    J Am Acad Audiol; 2010 Jan; 21(1):16-27. PubMed ID: 20085196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using evoked compound action potentials to assess activation of electrodes and predict C-levels in the Tempo+ cochlear implant speech processor.
    Alvarez I; de la Torre A; Sainz M; Roldán C; Schoesser H; Spitzer P
    Ear Hear; 2010 Feb; 31(1):134-45. PubMed ID: 19838116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The distance from the modiolus of perimodiolar electrode arrays of cochlear implants.
    Perényi Á; Nagy R; Dimák B; Csanády M; Jóri J; Kiss JG; Rovó L
    Orv Hetil; 2019 Aug; 160(31):1216-1222. PubMed ID: 31352808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cochlear implant electrode array design on auditory nerve and behavioral response in children.
    Telmesani LM; Said NM
    Int J Pediatr Otorhinolaryngol; 2015 May; 79(5):660-5. PubMed ID: 25746517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation.
    Snel-Bongers J; Briaire JJ; Vanpoucke FJ; Frijns JH
    Ear Hear; 2012; 33(3):367-76. PubMed ID: 22048258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Place-versus-Pitch Mismatch between a Perimodiolar and Lateral Wall Cochlear Implant Electrode Array in Patients with Single-Sided Deafness and a Cochlear Implant.
    Peters JPM; Bennink E; van Zanten GA
    Audiol Neurootol; 2019; 24(1):38-48. PubMed ID: 30995658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.
    DeVries L; Scheperle R; Bierer JA
    J Assoc Res Otolaryngol; 2016 Jun; 17(3):237-52. PubMed ID: 26926152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiologic effects of placing cochlear implant electrodes in a perimodiolar position in young children.
    Wackym PA; Firszt JB; Gaggl W; Runge-Samuelson CL; Reeder RM; Raulie JC
    Laryngoscope; 2004 Jan; 114(1):71-6. PubMed ID: 14709998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological spread of excitation and pitch perception for dual and single electrodes using the Nucleus Freedom cochlear implant.
    Busby PA; Battmer RD; Pesch J
    Ear Hear; 2008 Dec; 29(6):853-64. PubMed ID: 18633324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pitch ranking, electrode discrimination, and physiological spread-of-excitation using Cochlear's dual-electrode mode.
    Goehring JL; Neff DL; Baudhuin JL; Hughes ML
    J Acoust Soc Am; 2014 Aug; 136(2):715-27. PubMed ID: 25096106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear implant place psychophysics 1. Pitch estimation with deeply inserted electrodes.
    Cohen LT; Busby PA; Whitford LA; Clark GM
    Audiol Neurootol; 1996; 1(5):265-77. PubMed ID: 9390808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of cochlear implant arrays result in changes in behavioral and physiological responses in children.
    Gordin A; Papsin B; James A; Gordon K
    Otol Neurotol; 2009 Oct; 30(7):908-15. PubMed ID: 19730148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ECAP, ESR and subjective levels for two different nucleus 24 electrode arrays.
    Polak M; Hodges A; Balkany T
    Otol Neurotol; 2005 Jul; 26(4):639-45. PubMed ID: 16015160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically evoked compound action potential measures for virtual channels versus physical electrodes.
    Hughes ML; Goulson AM
    Ear Hear; 2011; 32(3):323-30. PubMed ID: 21187752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant subjects.
    Eisen MD; Franck KH
    Ear Hear; 2004 Dec; 25(6):528-38. PubMed ID: 15604914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.