These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 165839)
21. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization. Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921 [TBL] [Abstract][Full Text] [Related]
22. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
23. Studies on energy and electron transfer systems in the green photosynthetic bacterium Chloropseudomonas ethylica strain 2-K. II. Composition of pigments and electron transfer systems. Shioi Y; Takamiya K; Nishimura M J Biochem; 1974 Aug; 76(2):241-50. PubMed ID: 4372208 [No Abstract] [Full Text] [Related]
24. Non-equilibrium thermodynamics of energy conversion in bioenergetics. Rottenberg H Biochim Biophys Acta; 1979 Dec; 549(3-4):225-53. PubMed ID: 228718 [No Abstract] [Full Text] [Related]
25. The electromechanochemical model for energy coupling in mitochondria. Green DE Biochim Biophys Acta; 1974 Apr; 346(1):27-78. PubMed ID: 4151654 [No Abstract] [Full Text] [Related]
26. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Blazyk JL; Lippard SJ Biochemistry; 2002 Dec; 41(52):15780-94. PubMed ID: 12501207 [TBL] [Abstract][Full Text] [Related]
27. Structure--function studies on the iron-sulfur flavoenzyme glutamate synthase: an unexpectedly complex self-regulated enzyme. Vanoni MA; Curti B Arch Biochem Biophys; 2005 Jan; 433(1):193-211. PubMed ID: 15581577 [TBL] [Abstract][Full Text] [Related]
29. Inferences from protein and nucleic acid sequences: early molecular evolution, divergence of kingdoms and rates of change. Dayhoff MO; Barker WC; McLaughlin PJ Orig Life; 1974; 5(3):311-30. PubMed ID: 4370101 [No Abstract] [Full Text] [Related]
30. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
31. Structure of high-energy molecules. Pauling L Chem Br; 1970 Nov; 6(11):468-72. PubMed ID: 5474184 [No Abstract] [Full Text] [Related]
32. Inorganic types of fermentation and anaerobic respirations in the evolution of energy-yielding metabolism. Egami F Orig Life; 1974; 5(3):405-13. PubMed ID: 4413907 [No Abstract] [Full Text] [Related]
34. [Coenzymes]. Walaas O Tidsskr Nor Laegeforen; 1970 Jan; 90(2):167-71. PubMed ID: 5430180 [No Abstract] [Full Text] [Related]
35. [Pharmacological regulation of the energy metabolism of the ischemic myocardium]. Gatsura VV Farmakol Toksikol; 1978; 41(5):517-29. PubMed ID: 29776 [No Abstract] [Full Text] [Related]
36. Bioenergetics: birth of a bulletin. Beyer RE Science; 1968 Nov; 162(3855):750-1. PubMed ID: 5686214 [No Abstract] [Full Text] [Related]
37. [Oxidative phosphorylation--structure and function (author's transl)]. Kagawa Y; Sone N; Hirata H; Yoshida M Tanpakushitsu Kakusan Koso; 1975 Mar; 20(4):318-51. PubMed ID: 169549 [No Abstract] [Full Text] [Related]
38. ELECTRON TRANSPORT IN PEPTOSTREPTOCOCCUS ELSDENII. BALDWIN RL; MILLIGAN LP Biochim Biophys Acta; 1964 Dec; 92():421-32. PubMed ID: 14269334 [No Abstract] [Full Text] [Related]
39. ENZYMATIC SYNTHESIS OF COENZYME B12. PETERKOFSKY A; WEISSBACH H Ann N Y Acad Sci; 1964 Apr; 112():622-37. PubMed ID: 14167295 [No Abstract] [Full Text] [Related]
40. A revised and more detailed hypothesis for the mechanism of oxidative phosphorylation at the diphosphopyridine nucleotide-flavin level. Grabe B J Theor Biol; 1964 Jul; 7(1):112-22. PubMed ID: 4290099 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]