These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16583905)

  • 41. Spectral density affects the intelligibility of tone-vocoded speech: Implications for cochlear implant simulations.
    Rosen S; Zhang Y; Speers K
    J Acoust Soc Am; 2015 Sep; 138(3):EL318-23. PubMed ID: 26428833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing.
    Chen F; Wong LL; Tahmina Q; Azimi B; Hu Y
    J Acoust Soc Am; 2012 Aug; 132(2):EL142-8. PubMed ID: 22894313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of overlap-masking on binaural reverberant word intelligibility.
    Libbey B; Rogers PH
    J Acoust Soc Am; 2004 Nov; 116(5):3141-51. PubMed ID: 15603159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spectral and temporal cues in cochlear implant speech perception.
    Nie K; Barco A; Zeng FG
    Ear Hear; 2006 Apr; 27(2):208-17. PubMed ID: 16518146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing speech intelligibility: interactions among context, modality, speech style, and masker.
    Van Engen KJ; Phelps JE; Smiljanic R; Chandrasekaran B
    J Speech Lang Hear Res; 2014 Oct; 57(5):1908-18. PubMed ID: 24687206
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of a spectral subtraction strategy to suppress reverberant energy in cochlear implant devices.
    Kokkinakis K; Runge C; Tahmina Q; Hu Y
    J Acoust Soc Am; 2015 Jul; 138(1):115-24. PubMed ID: 26233012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.
    Lai YH; Tsao Y; Lu X; Chen F; Su YT; Chen KC; Chen YH; Chen LC; Po-Hung Li L; Lee CH
    Ear Hear; 2018; 39(4):795-809. PubMed ID: 29360687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contribution of formant frequency information to vowel perception in steady-state noise by cochlear implant users.
    Sagi E; Svirsky MA
    J Acoust Soc Am; 2017 Feb; 141(2):1027. PubMed ID: 28253672
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility.
    Qazi OU; van Dijk B; Moonen M; Wouters J
    Hear Res; 2013 May; 299():79-87. PubMed ID: 23396271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Speech perception, localization, and lateralization with bilateral cochlear implants.
    van Hoesel RJ; Tyler RS
    J Acoust Soc Am; 2003 Mar; 113(3):1617-30. PubMed ID: 12656396
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pulse-spreading harmonic complex as an alternative carrier for vocoder simulations of cochlear implants.
    Mesnildrey Q; Hilkhuysen G; Macherey O
    J Acoust Soc Am; 2016 Feb; 139(2):986-91. PubMed ID: 26936577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recovery from prior stimulation: masking of speech by interrupted noise for younger and older adults with normal hearing.
    Dubno JR; Horwitz AR; Ahlstrom JB
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2084-94. PubMed ID: 12703719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Evaluation of Output Signal to Noise Ratio as a Predictor of Cochlear Implant Speech Intelligibility.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2018; 39(5):958-968. PubMed ID: 29474218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of noise and reverberation on speech intelligibility for cochlear implant recipients in realistic sound environments.
    Badajoz-Davila J; Buchholz JM; Van-Hoesel R
    J Acoust Soc Am; 2020 May; 147(5):3538. PubMed ID: 32486825
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Speech intelligibility in reverberation with ideal binary masking: effects of early reflections and signal-to-noise ratio threshold.
    Roman N; Woodruff J
    J Acoust Soc Am; 2013 Mar; 133(3):1707-17. PubMed ID: 23464040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age-related changes in listening effort for various types of masker noises.
    Desjardins JL; Doherty KA
    Ear Hear; 2013; 34(3):261-72. PubMed ID: 23095723
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing.
    Jørgensen S; Dau T
    J Acoust Soc Am; 2011 Sep; 130(3):1475-87. PubMed ID: 21895088
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Avoiding disconnection: An evaluation of telephone options for cochlear implant users.
    Marcrum SC; Picou EM; Steffens T
    Int J Audiol; 2017 Mar; 56(3):186-193. PubMed ID: 27809627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.