These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16583905)

  • 61. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing.
    Jørgensen S; Dau T
    J Acoust Soc Am; 2011 Sep; 130(3):1475-87. PubMed ID: 21895088
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Avoiding disconnection: An evaluation of telephone options for cochlear implant users.
    Marcrum SC; Picou EM; Steffens T
    Int J Audiol; 2017 Mar; 56(3):186-193. PubMed ID: 27809627
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Perceptually optimized gain function for cochlear implant signal-to-noise ratio based noise reduction.
    Mauger SJ; Dawson PW; Hersbach AA
    J Acoust Soc Am; 2012 Jan; 131(1):327-36. PubMed ID: 22280595
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fundamental frequency discrimination and speech perception in noise in cochlear implant simulations.
    Carroll J; Zeng FG
    Hear Res; 2007 Sep; 231(1-2):42-53. PubMed ID: 17604581
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation.
    Shannon RV; Fu QJ; Galvin J
    Acta Otolaryngol Suppl; 2004 May; (552):50-4. PubMed ID: 15219048
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The impact of reverberation on speech intelligibility in cochlear implant recipients.
    Kressner AA; Westermann A; Buchholz JM
    J Acoust Soc Am; 2018 Aug; 144(2):1113. PubMed ID: 30180700
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Gender and speaker identification as a function of the number of channels in spectrally reduced speech.
    Gonzalez J; Oliver JC
    J Acoust Soc Am; 2005 Jul; 118(1):461-70. PubMed ID: 16119365
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Testing Speech Perception with Cochlear Implants Through Digital Audio Streaming in a Virtual Sound Booth: A Feasibility Study.
    Chen C; Stein AL; Hughes ML; Morris HR; Litvak LM; Zeitler DM
    J Am Acad Audiol; 2021 Apr; 32(4):219-228. PubMed ID: 34015830
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Examining informational masking in cochlear implant users].
    Pyschny V; Landwehr M; Walger M; von Wedel H; Meister H
    HNO; 2009 Jul; 57(7):671-7. PubMed ID: 19517083
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Experimental investigation of the effects of the acoustical conditions in a simulated classroom on speech recognition and learning in children.
    Valente DL; Plevinsky HM; Franco JM; Heinrichs-Graham EC; Lewis DE
    J Acoust Soc Am; 2012 Jan; 131(1):232-46. PubMed ID: 22280587
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Babble and random-noise masking of speech in high and low context cue conditions.
    Lewis HD; Benignus VA; Muller KE; Malott CM; Barton CN
    J Speech Hear Res; 1988 Mar; 31(1):108-14. PubMed ID: 3352248
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Self-masking and overlap-masking from reverberation using the speech-evoked auditory brainstem response.
    Al Osman R; Dajani HR; Giguère C
    J Acoust Soc Am; 2017 Dec; 142(6):EL555. PubMed ID: 29289064
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Listening benefits in speech-in-speech recognition are altered under reverberant conditions.
    Viswanathan N; Kokkinakis K
    J Acoust Soc Am; 2019 May; 145(5):EL348. PubMed ID: 31153320
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reverberation, masking, filtering, and level effects on speech recognition performance.
    Loven FC; Collins MJ
    J Speech Hear Res; 1988 Dec; 31(4):681-95. PubMed ID: 3230898
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A new sound coding strategy for suppressing noise in cochlear implants.
    Hu Y; Loizou PC
    J Acoust Soc Am; 2008 Jul; 124(1):498-509. PubMed ID: 18646993
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optimized gain functions in ideal time-frequency masks and their application to dereverberation for cochlear implants.
    Kokkinakis K; Stohl JS
    JASA Express Lett; 2021 Aug; 1(8):084401. PubMed ID: 36154250
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Forward-masking patterns produced by symmetric and asymmetric pulse shapes in electric hearing.
    Macherey O; van Wieringen A; Carlyon RP; Dhooge I; Wouters J
    J Acoust Soc Am; 2010 Jan; 127(1):326-38. PubMed ID: 20058980
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effect of simulated room acoustic parameters on the intelligibility and perceived reverberation of monosyllabic words and sentences.
    Fogerty D; Alghamdi A; Chan WY
    J Acoust Soc Am; 2020 May; 147(5):EL396. PubMed ID: 32486791
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Analysis of speech-based Speech Transmission Index methods with implications for nonlinear operations.
    Goldsworthy RL; Greenberg JE
    J Acoust Soc Am; 2004 Dec; 116(6):3679-89. PubMed ID: 15658718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.