BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16584172)

  • 1. Transmembrane helix-helix association: relative stabilities at low pH.
    Valluru N; Silva F; Dhage M; Rodriguez G; Alloor SR; Renthal R
    Biochemistry; 2006 Apr; 45(14):4371-7. PubMed ID: 16584172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of helix-helix association free energy from partial unfolding of bacterioopsin.
    Nannepaga SJ; Gawalapu R; Velasquez D; Renthal R
    Biochemistry; 2004 Jan; 43(2):550-9. PubMed ID: 14717611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable folding core in the folding transition state of an alpha-helical integral membrane protein.
    Curnow P; Di Bartolo ND; Moreton KM; Ajoje OO; Saggese NP; Booth PJ
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14133-8. PubMed ID: 21831834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential unfolding of individual helices of bacterioopsin observed in molecular dynamics simulations of extraction from the purple membrane.
    Seeber M; Fanelli F; Paci E; Caflisch A
    Biophys J; 2006 Nov; 91(9):3276-84. PubMed ID: 16861280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles.
    Krishnamani V; Lanyi JK
    Biochemistry; 2012 Feb; 51(6):1061-9. PubMed ID: 22304411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolding pathways of individual bacteriorhodopsins.
    Oesterhelt F; Oesterhelt D; Pfeiffer M; Engel A; Gaub HE; Müller DJ
    Science; 2000 Apr; 288(5463):143-6. PubMed ID: 10753119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the energy landscape of the membrane protein bacteriorhodopsin.
    Janovjak H; Struckmeier J; Hubain M; Kedrov A; Kessler M; Müller DJ
    Structure; 2004 May; 12(5):871-9. PubMed ID: 15130479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
    Curnow P; Booth PJ
    J Mol Biol; 2010 Nov; 403(4):630-42. PubMed ID: 20850459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of a two-transmembrane-helix peptide with lipid bilayers and dodecyl sulfate micelles.
    Renthal R; Brancaleon L; Peña I; Silva F; Chen LY
    Biophys Chem; 2011 Dec; 159(2-3):321-7. PubMed ID: 21924540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin.
    Cisneros DA; Oesterhelt D; Müller DJ
    Structure; 2005 Feb; 13(2):235-42. PubMed ID: 15698567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of the loops of bacteriorhodopsin closely resembles the crystal structure.
    Katragadda M; Alderfer JL; Yeagle PL
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):1-6. PubMed ID: 10825424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Point mutations in membrane proteins reshape energy landscape and populate different unfolding pathways.
    Sapra KT; Balasubramanian GP; Labudde D; Bowie JU; Muller DJ
    J Mol Biol; 2008 Feb; 376(4):1076-90. PubMed ID: 18191146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR hydrogen exchange of the OB-fold protein LysN as a function of denaturant: the most conserved elements of structure are the most stable to unfolding.
    Alexandrescu AT; Jaravine VA; Dames SA; Lamour FP
    J Mol Biol; 1999 Jun; 289(4):1041-54. PubMed ID: 10369781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spatial structure of bacterioopsin 87-136 fragment].
    Maslennikov IV; Lugovskoĭ AA; Arsen'ev AS; Chikin LD; Ivanov VT
    Bioorg Khim; 1997 Oct; 23(10):771-82. PubMed ID: 9490612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spatial structure of bacterioopsin transmembrane segments C, E, and G from two-dimensional 1H-NMR data].
    Maslennikov IV; Bocharov EV; Arsen'ev AS
    Bioorg Khim; 1995 Sep; 21(9):659-74. PubMed ID: 8588811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding of apomyoglobin from Aplysia limacina: the effect of salt and pH on the cooperativity of folding.
    Staniforth RA; Bigotti MG; Cutruzzolà F; Allocatelli CT; Brunori M
    J Mol Biol; 1998 Jan; 275(1):133-48. PubMed ID: 9451445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residue-specific millisecond to microsecond fluctuations in bacteriorhodopsin induced by disrupted or disorganized two-dimensional crystalline lattice, through modified lipid-helix and helix-helix interactions, as revealed by 13C NMR.
    Saitô H; Tsuchida T; Ogawa K; Arakawa T; Yamaguchi S; Tuzi S
    Biochim Biophys Acta; 2002 Sep; 1565(1):97-106. PubMed ID: 12225857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure of bacteriorhodopsin fragments. External sequence constraints specify the conformation of transmembrane helices.
    Lüneberg J; Widmann M; Dathe M; Marti T
    J Biol Chem; 1998 Oct; 273(44):28822-30. PubMed ID: 9786882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.