These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16584216)

  • 21. One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications.
    Tang X; Choo ES; Li L; Ding J; Xue J
    Langmuir; 2009 May; 25(9):5271-5. PubMed ID: 19397360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-pot synthesis of robust core/shell gold nanoparticles.
    Dong H; Zhu M; Yoon JA; Gao H; Jin R; Matyjaszewski K
    J Am Chem Soc; 2008 Oct; 130(39):12852-3. PubMed ID: 18763773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent.
    Gao J; Liang G; Cheung JS; Pan Y; Kuang Y; Zhao F; Zhang B; Zhang X; Wu EX; Xu B
    J Am Chem Soc; 2008 Sep; 130(35):11828-33. PubMed ID: 18681432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of FePt nanoparticles having high coercivity.
    Rutledge RD; Morris WH; Wellons MS; Gai Z; Shen J; Bentley J; Wittig JE; Lukehart CM
    J Am Chem Soc; 2006 Nov; 128(44):14210-1. PubMed ID: 17076466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of thiol-capped FePt nanomagnetic porous particles.
    Gao X; Tam K; Yu KM; Tsang SC
    Small; 2005 Oct; 1(10):949-52. PubMed ID: 17193374
    [No Abstract]   [Full Text] [Related]  

  • 26. FePt@CoS(2) yolk-shell nanocrystals as a potent agent to kill HeLa cells.
    Gao J; Liang G; Zhang B; Kuang Y; Zhang X; Xu B
    J Am Chem Soc; 2007 Feb; 129(5):1428-33. PubMed ID: 17263428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and stabilization of monodisperse Fe nanoparticles.
    Peng S; Wang C; Xie J; Sun S
    J Am Chem Soc; 2006 Aug; 128(33):10676-7. PubMed ID: 16910651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices.
    Sun S; Murray CB; Weller D; Folks L; Moser A
    Science; 2000 Mar; 287(5460):1989-92. PubMed ID: 10720318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct chemical synthesis of L1(0)-FePtAu nanoparticles with high coercivity.
    Yu Y; Mukherjee P; Tian Y; Li XZ; Shield JE; Sellmyer DJ
    Nanoscale; 2014 Oct; 6(20):12050-5. PubMed ID: 25189100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface Modification and Heat Generation of FePt Nanoparticles.
    Wei DH; Pan KY; Tong SK
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Post-treatment Method for the Synthesis of Monodisperse Binary FePt-Fe
    Liu Z; Wu C; Niu L; Yang G; Wang K; Pei W; Wang Q
    Nanoscale Res Lett; 2017 Sep; 12(1):540. PubMed ID: 28929355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct synthesis of fct-structured FePt nanoparticles at low temperature with assistance of poly(N-vinyl-2-pyrrolidone).
    Iwamoto T; Matsumoto K; Kitamoto Y; Toshima N
    J Colloid Interface Sci; 2007 Apr; 308(2):564-7. PubMed ID: 17289069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generalized route to metal nanoparticles with liquid behavior.
    Warren SC; Banholzer MJ; Slaughter LS; Giannelis EP; DiSalvo FJ; Wiesner UB
    J Am Chem Soc; 2006 Sep; 128(37):12074-5. PubMed ID: 16967950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of Pt/Ru bimetallic nanoparticles in high-temperature and high-pressure fluids.
    Ueji M; Harada M; Kimura Y
    J Colloid Interface Sci; 2008 Jun; 322(1):358-63. PubMed ID: 18377917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct synthesis of a bimodal nanosponge based on FePt and ZnS.
    Gu H; Zheng R; Liu H; Zhang X; Xu B
    Small; 2005 Apr; 1(4):402-6. PubMed ID: 17193463
    [No Abstract]   [Full Text] [Related]  

  • 36. Investigation of the nucleation and growth dynamics of FePt nanoparticles prepared via a high-temperature synthesis route employing PtCl(2) as platinum precursor.
    Heller H; Ahrenstorf K; Broekaert JA; Weller H
    Phys Chem Chem Phys; 2009 May; 11(17):3257-62. PubMed ID: 19370222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents.
    Lutz JF; Stiller S; Hoth A; Kaufner L; Pison U; Cartier R
    Biomacromolecules; 2006 Nov; 7(11):3132-8. PubMed ID: 17096542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced thermal stability and magnetic properties in NaCl-type FePt-MnO binary nanocrystal superlattices.
    Dong A; Chen J; Ye X; Kikkawa JM; Murray CB
    J Am Chem Soc; 2011 Aug; 133(34):13296-9. PubMed ID: 21800910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-pot redox syntheses of heteronanostructures of Ag nanoparticles on MoO3 nanofibers.
    Dong W; Shi Z; Ma J; Hou C; Wan Q; Feng S; Cogbill A; Tian ZR
    J Phys Chem B; 2006 Mar; 110(12):5845-8. PubMed ID: 16553389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling transport and chemical functionality of magnetic nanoparticles.
    Latham AH; Williams ME
    Acc Chem Res; 2008 Mar; 41(3):411-20. PubMed ID: 18251514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.