These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16584550)

  • 1. Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock.
    Vilaprinyo E; Alves R; Sorribas A
    BMC Bioinformatics; 2006 Apr; 7():184. PubMed ID: 16584550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarities and differences of gene expression in yeast stress conditions.
    Rokhlenko O; Wexler Y; Yakhini Z
    Bioinformatics; 2007 Jan; 23(2):e184-90. PubMed ID: 17237090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanisms of yeast resistance to environmental stress].
    Piecuch A; Obłąk E
    Postepy Hig Med Dosw (Online); 2013 Apr; 67():238-54. PubMed ID: 23619223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Operating Principles of Yeast Metabolism during Adaptation to Heat Stress.
    Pereira T; Vilaprinyo E; Belli G; Herrero E; Salvado B; Sorribas A; Altés G; Alves R
    Cell Rep; 2018 Feb; 22(9):2421-2430. PubMed ID: 29490277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response.
    Krakowiak J; Zheng X; Patel N; Feder ZA; Anandhakumar J; Valerius K; Gross DS; Khalil AS; Pincus D
    Elife; 2018 Feb; 7():. PubMed ID: 29393852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of the eukaryotic heat-shock response: dynamics of the hsp70 promoter.
    Rieger TR; Morimoto RI; Hatzimanikatis V
    Biophys J; 2005 Mar; 88(3):1646-58. PubMed ID: 15626701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS; Moon HY; Yun HS; Jin I
    J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Module-based analysis of robustness tradeoffs in the heat shock response system.
    Kurata H; El-Samad H; Iwasaki R; Ohtake H; Doyle JC; Grigorova I; Gross CA; Khammash M
    PLoS Comput Biol; 2006 Jul; 2(7):e59. PubMed ID: 16863396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities.
    Castells-Roca L; García-Martínez J; Moreno J; Herrero E; Bellí G; Pérez-Ortín JE
    PLoS One; 2011 Feb; 6(2):e17272. PubMed ID: 21364882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative model of the response of yeast to osmotic shock.
    Klipp E; Nordlander B; Krüger R; Gennemark P; Hohmann S
    Nat Biotechnol; 2005 Aug; 23(8):975-82. PubMed ID: 16025103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock partially dissociates the overlapping modules of the yeast protein-protein interaction network: a systems level model of adaptation.
    Mihalik Á; Csermely P
    PLoS Comput Biol; 2011 Oct; 7(10):e1002187. PubMed ID: 22022244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein chaperones and the heat shock response in Saccharomyces cerevisiae.
    Morano KA; Liu PC; Thiele DJ
    Curr Opin Microbiol; 1998 Apr; 1(2):197-203. PubMed ID: 10066474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.
    Izawa S; Kita T; Ikeda K; Inoue Y
    Biochem J; 2008 Aug; 414(1):111-9. PubMed ID: 18442359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast.
    Estruch F
    FEMS Microbiol Rev; 2000 Oct; 24(4):469-86. PubMed ID: 10978547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic Hsp70 promotes ubiquitination for endoplasmic reticulum-associated degradation of a misfolded mutant of the yeast plasma membrane ATPase, PMA1.
    Han S; Liu Y; Chang A
    J Biol Chem; 2007 Sep; 282(36):26140-9. PubMed ID: 17631501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The plant response: stress in the daily environment.
    Ferguson IB
    J Zhejiang Univ Sci; 2004 Feb; 5(2):129-32. PubMed ID: 14674021
    [No Abstract]   [Full Text] [Related]  

  • 18. Evolution of 'design' principles in biochemical networks.
    de Atauri P; Orrell D; Ramsey S; Bolouri H
    Syst Biol (Stevenage); 2004 Jun; 1(1):28-40. PubMed ID: 17052113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response to heat shock and oxidative stress in Saccharomyces cerevisiae.
    Morano KA; Grant CM; Moye-Rowley WS
    Genetics; 2012 Apr; 190(4):1157-95. PubMed ID: 22209905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.