These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16585038)

  • 21. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots.
    Chapman JA; King JS; Pregitzer KS; Zak DR
    Tree Physiol; 2005 Dec; 25(12):1501-10. PubMed ID: 16137936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low soil temperature inhibits the effect of high nutrient supply on photosynthetic response to elevated carbon dioxide concentration in white birch seedlings.
    Ambebe TF; Dang QL; Li J
    Tree Physiol; 2010 Feb; 30(2):234-43. PubMed ID: 20007132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species.
    Delagrange S; Montpied P; Dreyer E; Messier C; Sinoquet H
    New Phytol; 2006; 172(2):293-304. PubMed ID: 16995917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest.
    Epron D; Le Dantec V; Dufrene E; Granier A
    Tree Physiol; 2001 Feb; 21(2-3):145-52. PubMed ID: 11303645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.
    Delagrange S; Messier C; Lechowicz MJ; Dizengremel P
    Tree Physiol; 2004 Jul; 24(7):775-84. PubMed ID: 15123449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2.
    Kitao M; Hida T; Eguchi N; Tobita H; Utsugi H; Uemura A; Kitaoka S; Koike T
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():22-7. PubMed ID: 26404633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Norway maple displays greater seasonal growth and phenotypic plasticity to light than native sugar maple.
    Paquette A; Fontaine B; Berninger F; Dubois K; Lechowicz MJ; Messier C; Posada JM; Valladares F; Brisson J
    Tree Physiol; 2012 Nov; 32(11):1339-47. PubMed ID: 23076822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture.
    Bauer GA; Berntson GM
    Tree Physiol; 2001 Feb; 21(2-3):137-44. PubMed ID: 11303644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen.
    Kubiske ME; Zak DR; Pregitzer KS; Takeuchi Y
    Tree Physiol; 2002 Apr; 22(5):321-9. PubMed ID: 11960756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of elevated CO2 leaf diets on gypsy moth (Lepidoptera: Lymantriidae) respiration rates.
    Foss AR; Mattson WJ; Trier TM
    Environ Entomol; 2013 Jun; 42(3):503-14. PubMed ID: 23726059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of elevated CO2 concentration and temperature on nutrient accumulation and allocation in Betula albo-sinensis seedlings].
    Hou Y; Wang KY; Zhang C
    Ying Yong Sheng Tai Xue Bao; 2008 Jan; 19(1):13-9. PubMed ID: 18419065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings.
    Karonen M; Ossipov V; Ossipova S; Kapari L; Loponen J; Matsumura H; Kohno Y; Mikami C; Sakai Y; Izuta T; Pihlaja K
    J Chem Ecol; 2006 Jul; 32(7):1445-58. PubMed ID: 16718564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees.
    Sendall KM; Reich PB
    Tree Physiol; 2013 Jul; 33(7):713-29. PubMed ID: 23872734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability.
    Kitao M; Yazaki K; Kitaoka S; Fukatsu E; Tobita H; Komatsu M; Maruyama Y; Koike T
    Physiol Plant; 2015 Dec; 155(4):435-45. PubMed ID: 25690946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil.
    Jarvi MP; Burton AJ
    Plant Cell Environ; 2018 Mar; 41(3):504-516. PubMed ID: 29124767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment.
    Posada JM; Sievänen R; Messier C; Perttunen J; Nikinmaa E; Lechowicz MJ
    Ann Bot; 2012 Aug; 110(3):731-41. PubMed ID: 22665700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competition for nitrogen between European beech and sycamore maple shifts in favour of beech with decreasing light availability.
    Simon J; Li X; Rennenberg H
    Tree Physiol; 2014 Jan; 34(1):49-60. PubMed ID: 24391164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono.
    Razaq M; Zhang P; Shen HL; Salahuddin
    PLoS One; 2017; 12(2):e0171321. PubMed ID: 28234921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal acclimation of shoot respiration in an Arctic woody plant species subjected to 22 years of warming and altered nutrient supply.
    Heskel MA; Greaves HE; Turnbull MH; O'Sullivan OS; Shaver GR; Griffin KL; Atkin OK
    Glob Chang Biol; 2014 Aug; 20(8):2618-30. PubMed ID: 24510889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.