BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 16585268)

  • 1. RGMa inhibition promotes axonal growth and recovery after spinal cord injury.
    Hata K; Fujitani M; Yasuda Y; Doya H; Saito T; Yamagishi S; Mueller BK; Yamashita T
    J Cell Biol; 2006 Apr; 173(1):47-58. PubMed ID: 16585268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury.
    Kyoto A; Hata K; Yamashita T
    Brain Res; 2007 Dec; 1186():74-86. PubMed ID: 17996222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neogenin and repulsive guidance molecule signaling in the central nervous system.
    Yamashita T; Mueller BK; Hata K
    Curr Opin Neurobiol; 2007 Feb; 17(1):29-34. PubMed ID: 17169551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repulsive guidance molecule b inhibits neurite growth and is increased after spinal cord injury.
    Liu X; Hashimoto M; Horii H; Yamaguchi A; Naito K; Yamashita T
    Biochem Biophys Res Commun; 2009 May; 382(4):795-800. PubMed ID: 19324014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L1 CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates.
    Kubasak MD; Hedlund E; Roy RR; Carpenter EM; Edgerton VR; Phelps PE
    Exp Neurol; 2005 Aug; 194(2):363-75. PubMed ID: 16022864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration-enhancing effects of EphA4 blocking peptide following corticospinal tract injury in adult rat spinal cord.
    Fabes J; Anderson P; Brennan C; Bolsover S
    Eur J Neurosci; 2007 Nov; 26(9):2496-505. PubMed ID: 17970742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats.
    Tanaka H; Yamashita T; Yachi K; Fujiwara T; Yoshikawa H; Tohyama M
    Neuroscience; 2004; 127(1):155-64. PubMed ID: 15219678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of repulsive guidance molecule in neurons following sciatic nerve injury.
    Doya H; Ito T; Hata K; Fujitani M; Ohtori S; Saito-Watanabe T; Moriya H; Takahashi K; Kubo T; Yamashita T
    J Chem Neuroanat; 2006 Aug; 32(1):74-7. PubMed ID: 16863689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myelin-associated glycoprotein reduces axonal branching and enhances functional recovery after sciatic nerve transection in rats.
    Tomita K; Kubo T; Matsuda K; Yano K; Tohyama M; Hosokawa K
    Glia; 2007 Nov; 55(14):1498-507. PubMed ID: 17705198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal guidance molecules and the failure of axonal regeneration in the adult mammalian spinal cord.
    Bolsover S; Fabes J; Anderson PN
    Restor Neurol Neurosci; 2008; 26(2-3):117-30. PubMed ID: 18820406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen containing neonatal astrocytes stimulates regrowth of injured fibers and promotes modest locomotor recovery after spinal cord injury.
    Joosten EA; Veldhuis WB; Hamers FP
    J Neurosci Res; 2004 Jul; 77(1):127-42. PubMed ID: 15197746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptides derived from repulsive guidance molecule act as antagonists.
    Suda M; Hata K; Sawada A; Nakamura Y; Kubo T; Yamaguchi A; Yamashita T
    Biochem Biophys Res Commun; 2008 Jul; 371(3):501-4. PubMed ID: 18452705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hematopoietic factor granulocyte-colony stimulating factor improves outcome in experimental spinal cord injury.
    Pitzer C; Klussmann S; Krüger C; Letellier E; Plaas C; Dittgen T; Kirsch F; Stieltjes B; Weber D; Laage R; Martin-Villalba A; Schneider A
    J Neurochem; 2010 May; 113(4):930-42. PubMed ID: 20202082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BMP inhibition enhances axonal growth and functional recovery after spinal cord injury.
    Matsuura I; Taniguchi J; Hata K; Saeki N; Yamashita T
    J Neurochem; 2008 May; 105(4):1471-9. PubMed ID: 18221366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ibuprofen enhances recovery from spinal cord injury by limiting tissue loss and stimulating axonal growth.
    Wang X; Budel S; Baughman K; Gould G; Song KH; Strittmatter SM
    J Neurotrauma; 2009 Jan; 26(1):81-95. PubMed ID: 19125588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord].
    Furukawa S; Furukawa Y
    Brain Nerve; 2007 Dec; 59(12):1333-9. PubMed ID: 18095482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal cord injury-induced lesional expression of the repulsive guidance molecule (RGM).
    Schwab JM; Conrad S; Monnier PP; Julien S; Mueller BK; Schluesener HJ
    Eur J Neurosci; 2005 Mar; 21(6):1569-76. PubMed ID: 15845084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury.
    Ji B; Li M; Wu WT; Yick LW; Lee X; Shao Z; Wang J; So KF; McCoy JM; Pepinsky RB; Mi S; Relton JK
    Mol Cell Neurosci; 2006 Nov; 33(3):311-20. PubMed ID: 17011208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RhoA, RhoB, RhoC, Rac1, Cdc42, and Tc10 mRNA levels in spinal cord, sensory ganglia, and corticospinal tract neurons and long-lasting specific changes following spinal cord injury.
    Erschbamer MK; Hofstetter CP; Olson L
    J Comp Neurol; 2005 Apr; 484(2):224-33. PubMed ID: 15736231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.