These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16585507)

  • 21. Effect of crown ethers on structure, stability, activity, and enantioselectivity of subtilisin Carlsberg in organic solvents.
    Santos AM; Vidal M; Pacheco Y; Frontera J; Báez C; Ornellas O; Barletta G; Griebenow K
    Biotechnol Bioeng; 2001 Aug; 74(4):295-308. PubMed ID: 11410854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsic effects of solvent polarity on enzymic activation energies.
    Kim J; Clark DS; Dordick JS
    Biotechnol Bioeng; 2000 Jan; 67(1):112-6. PubMed ID: 10581442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of secondary structure on the activity of enzymes suspended in organic solvents.
    Dong A; Meyer JD; Kendrick BS; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1996 Oct; 334(2):406-14. PubMed ID: 8900418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane.
    Castillo B; Solá RJ; Ferrer A; Barletta G; Griebenow K
    Biotechnol Bioeng; 2008 Jan; 99(1):9-17. PubMed ID: 17546684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of a novel extracellular protease from a halo-alkaliphilic Bacillus sp. 17N-1, active in polar organic solvents.
    Papamichael EM; Theodorou LG; Perisynakis A; Drainas C
    Environ Technol; 2010 Sep; 31(10):1073-82. PubMed ID: 20718289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Salt-activation of nonhydrolase enzymes for use in organic solvents.
    Morgan JA; Clark DS
    Biotechnol Bioeng; 2004 Feb; 85(4):456-9. PubMed ID: 14755564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity.
    Yang L; Dordick JS; Garde S
    Biophys J; 2004 Aug; 87(2):812-21. PubMed ID: 15298890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of the three methionyl side chains of Streptomyces subtilisin inhibitor. Deuterium NMR studies in solution and in the solid state.
    Tamura A; Matsushita M; Naito A; Kojima S; Miura KI; Akasaka K
    Protein Sci; 1996 Jan; 5(1):127-39. PubMed ID: 8771205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Obtaining higher transesterification rates with subtilisin Carlsberg in nonaqueous media.
    Roy I; Sharma A; Gupta MN
    Bioorg Med Chem Lett; 2004 Feb; 14(4):887-9. PubMed ID: 15012987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-activity biocatalysts in organic media: solid-state buffers as the immobilisation matrix for protein-coated microcrystals.
    Kreiner M; Parker MC
    Biotechnol Bioeng; 2004 Jul; 87(1):24-33. PubMed ID: 15211485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen-17 and deuterium nuclear magnetic relaxation studies of lysozyme hydration in solution: field dispersion, concentration, pH/pD, and protein activity dependences.
    Kakalis LT; Baianu IC
    Arch Biochem Biophys; 1988 Dec; 267(2):829-41. PubMed ID: 3214182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organic solvent binding to crystalline subtilisin1 in mostly aqueous media and in the neat solvents.
    Schmitke JL; Stern LJ; Klibanov AM
    Biochem Biophys Res Commun; 1998 Jul; 248(2):273-7. PubMed ID: 9675126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations.
    Pandey S; Singh SP
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1747-57. PubMed ID: 22328257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitor-induced enzyme activation in organic solvents.
    Russell AJ; Klibanov AM
    J Biol Chem; 1988 Aug; 263(24):11624-6. PubMed ID: 3042774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL
    Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic catalysis in nonaqueous solvents.
    Zaks A; Klibanov AM
    J Biol Chem; 1988 Mar; 263(7):3194-201. PubMed ID: 3277967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salt effects on beta-glucosidase: pH-profile narrowing.
    Bowers EM; Ragland LO; Byers LD
    Biochim Biophys Acta; 2007 Dec; 1774(12):1500-7. PubMed ID: 17997993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.