BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16585745)

  • 1. Identification of lactaldehyde dehydrogenase in Methanocaldococcus jannaschii and its involvement in production of lactate for F420 biosynthesis.
    Grochowski LL; Xu H; White RH
    J Bacteriol; 2006 Apr; 188(8):2836-44. PubMed ID: 16585745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N
    Miller DV; Ruhlin M; Ray WK; Xu H; White RH
    FEBS Lett; 2017 Aug; 591(15):2269-2278. PubMed ID: 28644554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical origins of lactaldehyde and hydroxyacetone in Methanocaldococcus jannaschii.
    White RH
    Biochemistry; 2008 Apr; 47(17):5037-46. PubMed ID: 18363381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity.
    Samland AK; Wang M; Sprenger GA
    FEMS Microbiol Lett; 2008 Apr; 281(1):36-41. PubMed ID: 18318840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme F420 biosynthesis.
    Grochowski LL; Xu H; White RH
    Biochemistry; 2008 Mar; 47(9):3033-7. PubMed ID: 18260642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the Radical SAM Enzymes Involved in the Biosynthesis of Methanopterin and Coenzyme F
    Allen KD; White RH
    Methods Enzymol; 2018; 606():461-483. PubMed ID: 30097103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymology and evolution of the pyruvate pathway to 2-oxobutyrate in Methanocaldococcus jannaschii.
    Drevland RM; Waheed A; Graham DE
    J Bacteriol; 2007 Jun; 189(12):4391-400. PubMed ID: 17449626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase required for coenzyme F(420) biosynthesis.
    Graham DE; Xu H; White RH
    Arch Microbiol; 2003 Dec; 180(6):455-64. PubMed ID: 14593448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of an archaeon-specific riboflavin kinase.
    Mashhadi Z; Zhang H; Xu H; White RH
    J Bacteriol; 2008 Apr; 190(7):2615-8. PubMed ID: 18245297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coenzyme F420-dependent sulfite reductase-enabled sulfite detoxification and use of sulfite as a sole sulfur source by Methanococcus maripaludis.
    Johnson EF; Mukhopadhyay B
    Appl Environ Microbiol; 2008 Jun; 74(11):3591-5. PubMed ID: 18378657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of dihydrodipicolinate synthase from Methanocaldococcus jannaschii.
    Padmanabhan B; Strange RW; Antonyuk SV; Ellis MJ; Hasnain SS; Iino H; Agari Y; Bessho Y; Yokoyama S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Dec; 65(Pt 12):1222-6. PubMed ID: 20054116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An iron(II) dependent formamide hydrolase catalyzes the second step in the archaeal biosynthetic pathway to riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin.
    Grochowski LL; Xu H; White RH
    Biochemistry; 2009 May; 48(19):4181-8. PubMed ID: 19309161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway.
    Watanabe S; Piyanart S; Makino K
    FEBS J; 2008 Oct; 275(20):5139-49. PubMed ID: 18793327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of phosphoserine in the Methanococcales.
    Helgadóttir S; Rosas-Sandoval G; Söll D; Graham DE
    J Bacteriol; 2007 Jan; 189(2):575-82. PubMed ID: 17071763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADP-dependent phosphofructokinases in mesophilic and thermophilic methanogenic archaea.
    Verhees CH; Tuininga JE; Kengen SW; Stams AJ; van der Oost J; de Vos WM
    J Bacteriol; 2001 Dec; 183(24):7145-53. PubMed ID: 11717273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel F420-dependent Thioredoxin Reductase Gated by Low Potential FAD: A TOOL FOR REDOX REGULATION IN AN ANAEROBE.
    Susanti D; Loganathan U; Mukhopadhyay B
    J Biol Chem; 2016 Oct; 291(44):23084-23100. PubMed ID: 27590343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of glyceraldehyde-3-phosphate dehydrogenase from the archaeal hyperthermophile Methanocaldococcus jannaschii.
    Malay AD; Bessho Y; Ellis MJ; Antonyuk SV; Strange RW; Hasnain SS; Shinkai A; Padmanabhan B; Yokoyama S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Dec; 65(Pt 12):1227-33. PubMed ID: 20054117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new NAD
    Wu X; Xu L; Yan M
    Biosci Biotechnol Biochem; 2016 Dec; 80(12):2306-2310. PubMed ID: 27671251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic mechanism of fuculose-1-phosphate aldolase from the hyperthermophilic archaeon Methanococcus jannaschii.
    Park HC; Park JS; Choi JD; Dabrowski M; Atkins WM; Yoon MY
    Enzyme Microb Technol; 2012 Apr; 50(4-5):209-14. PubMed ID: 22418259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14.
    Menezes S; Gaston KW; Krivos KL; Apolinario EE; Reich NO; Sowers KR; Limbach PA; Perona JJ
    Nucleic Acids Res; 2011 Sep; 39(17):7641-55. PubMed ID: 21693558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.