BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 1658630)

  • 1. Natural and synthetic DNA elements with the CArG motif differ in expression and protein-binding properties.
    Santoro IM; Walsh K
    Mol Cell Biol; 1991 Dec; 11(12):6296-305. PubMed ID: 1658630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterodimers of myogenic helix-loop-helix regulatory factors and E12 bind a complex element governing myogenic induction of the avian cardiac alpha-actin promoter.
    French BA; Chow KL; Olson EN; Schwartz RJ
    Mol Cell Biol; 1991 May; 11(5):2439-50. PubMed ID: 1850096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes.
    Walsh K
    Mol Cell Biol; 1989 May; 9(5):2191-201. PubMed ID: 2501661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain 1A gene.
    Catala F; Wanner R; Barton P; Cohen A; Wright W; Buckingham M
    Mol Cell Biol; 1995 Aug; 15(8):4585-96. PubMed ID: 7623850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-specific expression of the skeletal alpha-actin gene involves sequences that can function independently of MyoD and Id.
    Muscat GE; Emery J; Collie ES
    Gene Expr; 1992; 2(3):241-57. PubMed ID: 1333317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle specificity encoded by specific serum response factor-binding sites.
    Chang PS; Li L; McAnally J; Olson EN
    J Biol Chem; 2001 May; 276(20):17206-12. PubMed ID: 11278806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements.
    Martin KA; Gualberto A; Kolman MF; Lowry J; Walsh K
    DNA Cell Biol; 1997 May; 16(5):653-61. PubMed ID: 9174170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle-specific (CArG) and serum-responsive (SRE) promoter elements are functionally interchangeable in Xenopus embryos and mouse fibroblasts.
    Taylor M; Treisman R; Garrett N; Mohun T
    Development; 1989 May; 106(1):67-78. PubMed ID: 2627887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proliferin, a prolactin/growth hormone-like peptide represses myogenic-specific transcription by the suppression of an essential serum response factor-like DNA-binding activity.
    Muscat GE; Gobius K; Emery J
    Mol Endocrinol; 1991 Jun; 5(6):802-14. PubMed ID: 1656242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A family of muscle gene promoter element (CArG) binding activities in Xenopus embryos: CArG/SRE discrimination and distribution during myogenesis.
    Taylor MV
    Nucleic Acids Res; 1991 May; 19(10):2669-75. PubMed ID: 2041743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximal serum stimulation of the c-fos serum response element requires both the serum response factor and a novel binding factor, SRE-binding protein.
    Boulden AM; Sealy LJ
    Mol Cell Biol; 1992 Oct; 12(10):4769-83. PubMed ID: 1328862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex.
    Mack CP; Thompson MM; Lawrenz-Smith S; Owens GK
    Circ Res; 2000 Feb; 86(2):221-32. PubMed ID: 10666419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the sequence requirements for the expression of a Xenopus borealis embryonic/larval skeletal actin gene.
    Lakin ND; Boardman M; Woodland HR
    Eur J Biochem; 1993 Jun; 214(2):425-35. PubMed ID: 8513792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5' CArG degeneracy in smooth muscle alpha-actin is required for injury-induced gene suppression in vivo.
    Hendrix JA; Wamhoff BR; McDonald OG; Sinha S; Yoshida T; Owens GK
    J Clin Invest; 2005 Feb; 115(2):418-27. PubMed ID: 15690088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fos and Jun repress transcriptional activation by myogenin and MyoD: the amino terminus of Jun can mediate repression.
    Li L; Chambard JC; Karin M; Olson EN
    Genes Dev; 1992 Apr; 6(4):676-89. PubMed ID: 1313772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive and negative gene regulation in muscle.
    Nabeshima Y; Uetsuki T; Komiya T; Nabeshima Y; Asakura A; Kamijo K; Yagami T; Fujisawa-Sehara A
    Symp Soc Exp Biol; 1992; 46():343-53. PubMed ID: 1341047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of single-stranded-DNA-binding proteins that interact with muscle gene elements.
    Santoro IM; Yi TM; Walsh K
    Mol Cell Biol; 1991 Apr; 11(4):1944-53. PubMed ID: 2005890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of binding and activating functions of the chick muscle acetylcholine receptor gamma-subunit upstream sequence.
    Jia HT; Tsay HJ; Schmidt J
    Cell Mol Neurobiol; 1992 Jun; 12(3):241-58. PubMed ID: 1330309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5' and first intron promoter regions.
    Mack CP; Owens GK
    Circ Res; 1999 Apr; 84(7):852-61. PubMed ID: 10205154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serum response factor and protein-mediated DNA bending contribute to transcription of the dystrophin muscle-specific promoter.
    Galvagni F; Lestingi M; Cartocci E; Oliviero S
    Mol Cell Biol; 1997 Mar; 17(3):1731-43. PubMed ID: 9032300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.