These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16586528)

  • 21. The effect of acetone on the dynamics of temporal oscillations and waves in the ruthenium-catalyzed Belousov-Zhabotinsky reaction.
    Somboon T; Wilairat P; Müller SC; Kheowan OU
    Phys Chem Chem Phys; 2015 Mar; 17(11):7114-21. PubMed ID: 25684352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncatalyzed reactions in the classical Belousov-Zhabotinsky system. I. Reactions of bromomalonic acid with acidic bromate and with HOBr.
    Onel L; Bourceanu G; Wittmann M; Noszticzius Z
    J Phys Chem A; 2005 Nov; 109(45):10314-22. PubMed ID: 16833327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.
    Hastings HM; Sobel SG; Field RJ; Bongiovi D; Burke B; Richford D; Finzel K; Garuthara M
    J Phys Chem A; 2008 May; 112(21):4715-8. PubMed ID: 18459756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature control of pattern formation in the Ru(bpy)(3)(2+)-catalyzed BZ-AOT system.
    McIlwaine R; Vanag VK; Epstein IR
    Phys Chem Chem Phys; 2009 Mar; 11(10):1581-7. PubMed ID: 19240935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechano-chemical oscillations and waves in reactive gels.
    Yashin VV; Kuksenok O; Dayal P; Balazs AC
    Rep Prog Phys; 2012 Jun; 75(6):066601. PubMed ID: 22790650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex behavior in coupled bromate oscillators.
    Chen Y; Wang J
    J Phys Chem A; 2005 May; 109(17):3950-6. PubMed ID: 16833714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The comparison of wavelet- and Fourier-based electromyographic indices of back muscle fatigue during dynamic contractions: validity and reliability results.
    da Silva RA; Larivière C; Arsenault AB; Nadeau S; Plamondon A
    Electromyogr Clin Neurophysiol; 2008; 48(3-4):147-62. PubMed ID: 18551835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time and frequency domain responses of the mechanomyogram and electromyogram during isometric ramp contractions: a comparison of the short-time Fourier and continuous wavelet transforms.
    Ryan ED; Cramer JT; Egan AD; Hartman MJ; Herda TJ
    J Electromyogr Kinesiol; 2008 Feb; 18(1):54-67. PubMed ID: 17070700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An elegant method to study an isolated spiral wave in a thin layer of a batch Belousov-Zhabotinsky reaction under oxygen-free conditions.
    Luengviriya C; Storb U; Hauser MJ; Müller SC
    Phys Chem Chem Phys; 2006 Mar; 8(12):1425-9. PubMed ID: 16633624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal switch of oscillation frequency in Belousov-Zhabotinsky liquid marbles.
    Adamatzky A; Fullarton C; Phillips N; De Lacy Costello B; Draper TC
    R Soc Open Sci; 2019 Apr; 6(4):190078. PubMed ID: 31183147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of initial substrate concentration of the Belousov-Zhabotinsky reaction on self-oscillation for microgel system.
    Suzuki D; Yoshida R
    J Phys Chem B; 2008 Oct; 112(40):12618-24. PubMed ID: 18785705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Derivation of a quantitative minimal model from a detailed elementary-step mechanism supported by mathematical coupling analysis.
    Shaik OS; Kammerer J; Gorecki J; Lebiedz D
    J Chem Phys; 2005 Dec; 123(23):234103. PubMed ID: 16392910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer aided analysis of phonocardiogram.
    Singh J; Anand RS
    J Med Eng Technol; 2007; 31(5):319-23. PubMed ID: 17701776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical Wave Propagation in the Belousov-Zhabotinsky Reaction Controlled by Electrical Potential.
    Kuze M; Horisaka M; Suematsu NJ; Amemiya T; Steinbock O; Nakata S
    J Phys Chem A; 2019 Jun; 123(23):4853-4857. PubMed ID: 31094190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Density changes accompanying wave propagation in the cerium-catalyzed Belousov-Zhabotinsky reaction.
    Kasuya M; Hatanaka K; Hobley J; Fukumura H; Sevcíkova H
    J Phys Chem A; 2005 Feb; 109(7):1405-10. PubMed ID: 16833458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deterministic chaos in the Belousov-Zhabotinsky reaction: Experiments and simulations.
    Zhang D; Gyorgyi L; Peltier WR
    Chaos; 1993 Oct; 3(4):723-745. PubMed ID: 12780076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation state of BZ reaction mixtures.
    Sobel SG; Hastings HM; Field RJ
    J Phys Chem A; 2006 Jan; 110(1):5-7. PubMed ID: 16392832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scanning electrochemical microscopy of Belousov-Zhabotinsky reaction: how confined oscillations reveal short lived radicals and auto-catalytic species.
    Stockmann TJ; Noël JM; Ristori S; Combellas C; Abou-Hassan A; Rossi F; Kanoufi F
    Anal Chem; 2015 Oct; 87(19):9621-30. PubMed ID: 26344794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wave propagation in the photosensitive Belousov-Zhabotinsky reaction across an asymmetric gap.
    Ichino T; Fujio K; Matsushita M; Nakata S
    J Phys Chem A; 2009 Mar; 113(11):2304-8. PubMed ID: 19215123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamical attributes of nanocatalyzed self-oscillating reactions via bifurcation analyses.
    Rajput V; Dayal P
    J Chem Phys; 2021 Aug; 155(6):064902. PubMed ID: 34391358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.