These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1658737)

  • 41. Satellite DNA from Xenopus laevis: comparative analysis of 745 and 1037 base pair Hind III tandem repeats.
    Meyerhof W; Tappeser B; Korge E; Knöchel W
    Nucleic Acids Res; 1983 Oct; 11(20):6997-7009. PubMed ID: 6314270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The organic crystallizing agent 2-methyl-2,4-pentanediol reduces DNA curvature by means of structural changes in A-tracts.
    Dlakic M; Park K; Griffith JD; Harvey SC; Harrington RE
    J Biol Chem; 1996 Jul; 271(30):17911-9. PubMed ID: 8663567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. S1 satellite DNA repetitive units display identical structure and overall variability in all Anatolian brown frog taxa.
    Picariello O; Feliciello I; Chinali G
    Genetica; 2016 Feb; 144(1):47-57. PubMed ID: 26662199
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation and characterization of a satellite DNA family in the Saccharum complex.
    Alix K; Baurens FC; Paulet F; Glaszmann JC; D'Hont A
    Genome; 1998 Dec; 41(6):854-64. PubMed ID: 9924794
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of diaminopurine and inosine substitutions on A-tract induced DNA curvature. Importance of the 3'-A-tract junction.
    Mollegaard NE; Bailly C; Waring MJ; Nielsen PE
    Nucleic Acids Res; 1997 Sep; 25(17):3497-502. PubMed ID: 9254710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Centromere parC of plasmid R1 is curved.
    Hoischen C; Bolshoy A; Gerdes K; Diekmann S
    Nucleic Acids Res; 2004; 32(19):5907-15. PubMed ID: 15528638
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure of 1.71 lb gm/cm(3) bovine satellite DNA: evolutionary relationship to satellite I.
    Taparowsky EJ; Gerbi SA
    Nucleic Acids Res; 1982 Sep; 10(18):5503-15. PubMed ID: 6292843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor.
    Davis CA; Wyatt GR
    Nucleic Acids Res; 1989 Jul; 17(14):5579-86. PubMed ID: 2762148
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-cleaving transcripts of satellite DNA from the newt.
    Epstein LM; Gall JG
    Cell; 1987 Feb; 48(3):535-43. PubMed ID: 2433049
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using hydroxyl radical to probe DNA structure.
    Price MA; Tullius TD
    Methods Enzymol; 1992; 212():194-219. PubMed ID: 1325598
    [No Abstract]   [Full Text] [Related]  

  • 51. The unique structure of A-tracts and intrinsic DNA bending.
    Haran TE; Mohanty U
    Q Rev Biophys; 2009 Feb; 42(1):41-81. PubMed ID: 19508739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction of bleomycin with a bent DNA fragment.
    Nightingale KP; Fox KR
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):929-34. PubMed ID: 1377916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Satellite DNA repeat sequence variation is low in three species of burying beetles in the genus Nicrophorus (Coleoptera: Silphidae).
    King LM; Cummings MP
    Mol Biol Evol; 1997 Nov; 14(11):1088-95. PubMed ID: 9364766
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA insertions as a component of the evolution of unique satellite DNA families in two genera of parasitoid wasps: Diadromus and Eupelmus (Hymenoptera).
    Rojas-Rousse D; Bigot Y; Periquet G
    Mol Biol Evol; 1993 Mar; 10(2):383-96. PubMed ID: 8487637
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cloning and characterization of a highly conserved satellite DNA from the mollusc Mytilus edulis.
    Ruiz-Lara S; Prats E; Sainz J; Cornudella L
    Gene; 1992 Aug; 117(2):237-42. PubMed ID: 1639270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High conservation of the differentially amplified MPA2 satellite DNA family in parthenogenetic root-knot nematodes.
    Mestrović N; Castagnone-Sereno P; Plohl M
    Gene; 2006 Jul; 376(2):260-7. PubMed ID: 16765538
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sequence analysis of bovine satellite I DNA (1.715 gm/cm3).
    Taparowsky EJ; Gerbi SA
    Nucleic Acids Res; 1982 Feb; 10(4):1271-81. PubMed ID: 6280137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New types of mouse centromeric satellite DNAs.
    Kuznetsova IS; Prusov AN; Enukashvily NI; Podgornaya OI
    Chromosome Res; 2005; 13(1):9-25. PubMed ID: 15791408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of chemical and enzymatic cleavage frequencies in supercoiled DNA.
    Tsen H; Levene SD
    J Mol Biol; 2004 Mar; 336(5):1087-102. PubMed ID: 15037071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.