These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 16587594)
21. Motion in a crowded environment: the influence of obstacles' size and shape and model of transport. Polanowski P; Sikorski A J Mol Model; 2019 Mar; 25(3):84. PubMed ID: 30826982 [TBL] [Abstract][Full Text] [Related]
22. Localized and delocalized motion of colloidal particles on a magnetic bubble lattice. Tierno P; Johansen TH; Fischer TM Phys Rev Lett; 2007 Jul; 99(3):038303. PubMed ID: 17678337 [TBL] [Abstract][Full Text] [Related]
23. Feedback control of atomic motion in an optical lattice. Morrow NV; Dutta SK; Raithel G Phys Rev Lett; 2002 Mar; 88(9):093003. PubMed ID: 11864001 [TBL] [Abstract][Full Text] [Related]
24. Taylor line swimming in microchannels and cubic lattices of obstacles. Münch JL; Alizadehrad D; Babu SB; Stark H Soft Matter; 2016 Sep; 12(35):7350-63. PubMed ID: 27510576 [TBL] [Abstract][Full Text] [Related]
25. Heavily damped motion of one-dimensional Bose gases in an optical lattice. Danshita I; Clark CW Phys Rev Lett; 2009 Jan; 102(3):030407. PubMed ID: 19257333 [TBL] [Abstract][Full Text] [Related]
26. Collective excitations and instability of an optical lattice due to unbalanced pumping. Asbóth JK; Ritsch H; Domokos P Phys Rev Lett; 2007 May; 98(20):203008. PubMed ID: 17677694 [TBL] [Abstract][Full Text] [Related]
28. Directional locking effects and dynamics for particles driven through a colloidal lattice. Reichhardt C; Olson Reichhardt CJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041405. PubMed ID: 15169017 [TBL] [Abstract][Full Text] [Related]
29. Lattice Boltzmann simulations of contact line motion in a liquid-gas system. Briant AJ; Papatzacos P; Yeomans JM Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):485-95. PubMed ID: 16214689 [TBL] [Abstract][Full Text] [Related]
30. Collective atomic motion in an optical lattice formed inside a high finesse cavity. Nagorny B; Elsässer T; Hemmerich A Phys Rev Lett; 2003 Oct; 91(15):153003. PubMed ID: 14611465 [TBL] [Abstract][Full Text] [Related]
31. Dynamic properties of the haptenic site of lipid haptens in phosphatidylcholine membranes. Their relation to the phase transition of the host lattice. Takeshita K; Utsumi H; Hamada A Biophys J; 1987 Aug; 52(2):187-97. PubMed ID: 2822160 [TBL] [Abstract][Full Text] [Related]
32. Flux reversal in a simple random-walk model on a fluctuating symmetric lattice. Casado-Pascual J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021112. PubMed ID: 17025398 [TBL] [Abstract][Full Text] [Related]
33. Sub-hexagonal phase correlation for motion estimation. Argyriou V IEEE Trans Image Process; 2011 Jan; 20(1):110-20. PubMed ID: 20624707 [TBL] [Abstract][Full Text] [Related]
34. 31P NMR relaxation studies of the activation of the coenzyme phosphate of glycogen phosphorylase. The role of motion of the bound phosphate. Withers SG; Madsen NB; Sykes BD Biophys J; 1985 Dec; 48(6):1019-26. PubMed ID: 3937556 [TBL] [Abstract][Full Text] [Related]
35. Interpretation of 1H and 2H spin-lattice relaxation dispersions: insights from molecular dynamics simulations of polymer melts. Henritzi P; Bormuth A; Vogel M Solid State Nucl Magn Reson; 2013; 54():32-40. PubMed ID: 23830720 [TBL] [Abstract][Full Text] [Related]
36. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis. Ba Y; Liu H; Sun J; Zheng R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303 [TBL] [Abstract][Full Text] [Related]
37. Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice. Shen Y; Kevrekidis PG; Sen S; Hoffman A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022905. PubMed ID: 25215797 [TBL] [Abstract][Full Text] [Related]
38. Numerical simulation of particle motion in an ultrasound field using the lattice Boltzmann model. Cosgrove JA; Buick JM; Campbell DM; Greated CA Ultrasonics; 2004 Oct; 43(1):21-5. PubMed ID: 15358525 [TBL] [Abstract][Full Text] [Related]