BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 1658998)

  • 1. Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences.
    Nahorski SR; Ragan CI; Challiss RA
    Trends Pharmacol Sci; 1991 Aug; 12(8):297-303. PubMed ID: 1658998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beryllium competitively inhibits brain myo-inositol monophosphatase, but unlike lithium does not enhance agonist-induced inositol phosphate accumulation.
    Faraci WS; Zorn SH; Bakker AV; Jackson E; Pratt K
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):369-74. PubMed ID: 8387266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitors of inositol monophosphatase.
    Fauroux CM; Freeman S
    J Enzyme Inhib; 1999; 14(2):97-108. PubMed ID: 10445037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of an enzyme displaying both inositol-polyphosphate-1-phosphatase and 3'-phosphoadenosine-5'-phosphate phosphatase activities: a novel target of lithium therapy.
    Patel S; Yenush L; Rodríguez PL; Serrano R; Blundell TL
    J Mol Biol; 2002 Jan; 315(4):677-85. PubMed ID: 11812139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of inositol monophosphatase in Saccharomyces cerevisiae.
    Murray M; Greenberg ML
    Mol Microbiol; 1997 Aug; 25(3):541-6. PubMed ID: 9302016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium and the brain: a psychopharmacological strategy to a molecular basis for manic depressive illness.
    Lenox RH; Watson DG
    Clin Chem; 1994 Feb; 40(2):309-14. PubMed ID: 8313612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoinositide deficiency due to inositol depletion is not a mechanism of lithium action in brain.
    Berry GT; Buccafusca R; Greer JJ; Eccleston E
    Mol Genet Metab; 2004 May; 82(1):87-92. PubMed ID: 15110328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroconvulsive shock stimulates polyphosphoinositide degradation and inositol trisphosphate accumulation in rat cerebrum: lithium pretreatment does not potentiate these changes.
    Vadnal RE; Bazan NG
    Neurosci Lett; 1987 Sep; 80(1):75-9. PubMed ID: 2821459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dictyostelium discoideum contains three inositol monophosphatase activities with different substrate specificities and sensitivities to lithium.
    Van Dijken P; Bergsma JC; Hiemstra HS; De Vries B; Van Der Kaay J; Van Haastert PJ
    Biochem J; 1996 Mar; 314 ( Pt 2)(Pt 2):491-5. PubMed ID: 8670062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers.
    Atack JR; Prior AM; Fletcher SR; Quirk K; McKernan R; Ragan CI
    J Pharmacol Exp Ther; 1994 Jul; 270(1):70-6. PubMed ID: 8035344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronically administered lithium alters neither myo-inositol monophosphatase activity nor phosphoinositide levels in rat brain.
    Honchar MP; Ackermann KE; Sherman WR
    J Neurochem; 1989 Aug; 53(2):590-4. PubMed ID: 2545823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog.
    Busa WB; Gimlich RL
    Dev Biol; 1989 Apr; 132(2):315-24. PubMed ID: 2538373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute and chronic lithium treatments influence agonist and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex.
    Kendall DA; Nahorski SR
    J Pharmacol Exp Ther; 1987 Jun; 241(3):1023-7. PubMed ID: 3037063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative effects of lithium on the phosphoinositide cycle in rat cerebral cortex, hippocampus, and striatum.
    Jenkinson S; Patel N; Nahorski SR; Challiss RA
    J Neurochem; 1993 Sep; 61(3):1082-90. PubMed ID: 8395558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lithium on phosphoinositide metabolism in vivo.
    Sherman WR; Gish BG; Honchar MP; Munsell LY
    Fed Proc; 1986 Oct; 45(11):2639-46. PubMed ID: 3019784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonist-induced desensitization of muscarinic receptor-mediated calcium efflux without concomitant desensitization of phosphoinositide hydrolysis.
    Masters SB; Quinn MT; Brown JH
    Mol Pharmacol; 1985 Mar; 27(3):325-32. PubMed ID: 2983182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption by lithium of phosphoinositide signalling in cerebellar granule cells in primary culture.
    del Río E; Shinomura T; van der Kaay J; Nicholls DG; Downes CP
    J Neurochem; 1998 Apr; 70(4):1662-9. PubMed ID: 9523584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myo-inositol monophosphatase: diverse effects of lithium, carbamazepine, and valproate.
    Vadnal R; Parthasarathy R
    Neuropsychopharmacology; 1995 Jul; 12(4):277-85. PubMed ID: 7576004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for coupling of resynthesis to hydrolysis in the phosphoinositide cycle.
    Monaco ME; Adelson JR
    Biochem J; 1991 Oct; 279 ( Pt 2)(Pt 2):337-41. PubMed ID: 1659375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related differences in the phosphoinositide system in rat neostriatum.
    DasGupta K; Weiler MH
    Neuropsychopharmacology; 1992 Sep; 7(2):163-5. PubMed ID: 1329801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.