These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 16590316)

  • 41. The type II isopentenyl Diphosphate:Dimethylallyl diphosphate isomerase (IDI-2): A model for acid/base chemistry in flavoenzyme catalysis.
    Thibodeaux CJ; Liu HW
    Arch Biochem Biophys; 2017 Oct; 632():47-58. PubMed ID: 28577910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thiamin Diphosphate Activation in 1-Deoxy-d-xylulose 5-Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions.
    White JK; Handa S; Vankayala SL; Merkler DJ; Woodcock HL
    J Phys Chem B; 2016 Sep; 120(37):9922-34. PubMed ID: 27537621
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier.
    Manat G; Roure S; Auger R; Bouhss A; Barreteau H; Mengin-Lecreulx D; Touzé T
    Microb Drug Resist; 2014 Jun; 20(3):199-214. PubMed ID: 24799078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity.
    Bitok JK; Meyers CF
    ACS Chem Biol; 2012 Oct; 7(10):1702-10. PubMed ID: 22839733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of the Papaya meleira virus on papaya latex structure and composition.
    Rodrigues SP; Da Cunha M; Ventura JA; Fernandes PM
    Plant Cell Rep; 2009 May; 28(5):861-71. PubMed ID: 19194708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The biosynthesis of rubber. Incorporation of mevalonate and isopentenyl pyrophosphate into rubber by Hevea brasiliensis-latex fractions.
    Archer BL; Audley BG; Cockbain EG; McSweeney GP
    Biochem J; 1963 Dec; 89(3):565-74. PubMed ID: 16749048
    [No Abstract]   [Full Text] [Related]  

  • 47. Metabolic transformation of mevalonic Acid by an enzyme system from peas.
    Pollard CJ; Bonner J; Haagen-Smit AJ; Nimmo CC
    Plant Physiol; 1966 Jan; 41(1):66-70. PubMed ID: 16656233
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of an Archaeal type II isopentenyl diphosphate isomerase in methanothermobacter thermautotrophicus.
    Barkley SJ; Cornish RM; Poulter CD
    J Bacteriol; 2004 Mar; 186(6):1811-7. PubMed ID: 14996812
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Studies on the biosynthesis of cholesterol. 10. Mevalonic kinase from liver.
    LEVY HR; POPJAK G
    Biochem J; 1960 Jun; 75(3):417-28. PubMed ID: 14416398
    [No Abstract]   [Full Text] [Related]  

  • 50. Studies on the biosynthesis of cholesterol. 9. Formation of phosphorylated derivatives of mevalonic acid in liver-enzyme preparations.
    DE WAARD A; POPJAK G
    Biochem J; 1959 Nov; 73(3):410-5. PubMed ID: 13815126
    [No Abstract]   [Full Text] [Related]  

  • 51. The formation of 5-phosphomevalonate by mevalonate kinase in Hevea brasiliensis latex.
    Williamson IP; Kekwick RG
    Biochem J; 1965 Sep; 96(3):862-71. PubMed ID: 5862423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Substances contained in wood, their chemistry and biochemistry].
    Runkel R; Sandermann W
    Naturwissenschaften; 1966 Oct; 53(20):513-25. PubMed ID: 4865515
    [No Abstract]   [Full Text] [Related]  

  • 53. Identification of the synthesis of guanosine tetraphosphate (MS I) as insertion of a pyrophosphoryl group into the 3'-position in guanosine 5'-diphosphate.
    Sy J; Lipmann F
    Proc Natl Acad Sci U S A; 1973 Feb; 70(2):306-9. PubMed ID: 4346881
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conversion of mevalonic acid to gamma, gamma-dimethylallyl pyrophosphate by Mycoplasma.
    Henrikson CV; Smith PF
    J Bacteriol; 1966 Sep; 92(3):701-6. PubMed ID: 4288495
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PHOSPHORYLATED INTERMEDIATES IN THE SYNTHESIS OF SQUALENE.
    Chaykin S; Law J; Phillips AH; Tchen TT; Bloch K
    Proc Natl Acad Sci U S A; 1958 Oct; 44(10):998-1004. PubMed ID: 16590316
    [No Abstract]   [Full Text] [Related]  

  • 56. Occurrence of Cationic Intermediates and Deficient Control during the Enzymatic Cyclization of Squalene to Hopanoids.
    Pale-Grosdemange C; Feil C; Rohmer M; Poralla K
    Angew Chem Int Ed Engl; 1998 Sep; 37(16):2237-2240. PubMed ID: 29711445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzymatic cyclizations of squalene analogs with threo- and erythro-diols at the 6,7- or 10,11-positions by recombinant squalene cyclase. Trapping of carbocation intermediates and mechanistic insights into the product and substrate specificities.
    Abe T; Hoshino T
    Org Biomol Chem; 2005 Sep; 3(17):3127-39. PubMed ID: 16106294
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measurement of cholesterol synthesis in man by isotope kinetics of squalene.
    Liu GC; Ahrens EH; Schreibman PH; Samuel P; McNamara DJ; Crouse JR
    Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4612-6. PubMed ID: 1060141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Squalene synthase inhibitors : clinical pharmacology and cholesterol-lowering potential.
    Charlton-Menys V; Durrington PN
    Drugs; 2007; 67(1):11-6. PubMed ID: 17209661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives.
    Ghimire GP; Thuan NH; Koirala N; Sohng JK
    J Microbiol Biotechnol; 2016 Mar; 26(3):441-51. PubMed ID: 26643964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.