BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 16592047)

  • 21. Control of chlorophyll production in rapidly greening bean leaves.
    Gassman M; Bogorad L
    Plant Physiol; 1967 Jun; 42(6):774-80. PubMed ID: 16656570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of P700-Chlorophyll a Protein Complex, Plastocyanin, and Cytochrome b(6)/f Complex.
    Takabe T; Takabe T; Akazawa T
    Plant Physiol; 1986 May; 81(1):60-6. PubMed ID: 16664808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytochemical localization of photosystem I in relation to differentiation of the thylakoid membranes during greening of barley leaves.
    Toda Y; Murakami S
    J Electron Microsc (Tokyo); 1995 Dec; 44(6):450-5. PubMed ID: 8991921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions.
    Heber U; Bilger W; Bligny R; Lange OL
    Planta; 2000 Nov; 211(6):770-80. PubMed ID: 11144261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biogenesis of photosystem I reaction center during greening of oat, bean and spinach leaves.
    Nechushtai R; Nelson N
    Plant Mol Biol; 1985 Nov; 4(6):377-84. PubMed ID: 24310940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of cytokinins in chloroplast lamellar development.
    Alberte RS; Naylor AW
    Plant Physiol; 1975 Jun; 55(6):1079-81. PubMed ID: 16659214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Greening of intermittent-light-grown bean plants in continuous light: thylakoid components in relation to photosynthetic performance and capacity for photoprotection.
    Chow WS; Funk C; Hope AB; Govindjee
    Indian J Biochem Biophys; 2000 Dec; 37(6):395-404. PubMed ID: 11355626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Greening of etiolated bean leaves in far red light.
    De Greef J; Butler WL; Roth TF
    Plant Physiol; 1971 Apr; 47(4):457-64. PubMed ID: 16657643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.
    Shibata Y; Katoh W; Tahara Y
    Biochim Biophys Acta; 2013 Apr; 1827(4):520-8. PubMed ID: 23416843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the Q
    Cherepanov DA; Shelaev IV; Gostev FE; Mamedov MD; Petrova AA; Aybush AV; Shuvalov VA; Semenov AY; Nadtochenko VA
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):895-905. PubMed ID: 28823462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein synthesis by isolated Acetabularia chloroplasts. Synthesis of the two minor chlorophyll a complexes in vitro.
    Green BR
    Eur J Biochem; 1982 Nov; 128(2-3):543-6. PubMed ID: 6759122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Kinetics and spectra of photo-induced changes in the absorption of pigment-protein complexes of photosystem 1 in a picosecond range].
    Borisov AIu; Danelius RV; Il'ina MD; Krasauskas VV; Piskarskas AS
    Mol Biol (Mosk); 1985; 19(3):636-42. PubMed ID: 3897830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf.
    Wientjes E; Philippi J; Borst JW; van Amerongen H
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):259-265. PubMed ID: 28095301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A synthetic de-greening gene circuit provides a reporting system that is remotely detectable and has a re-set capacity.
    Antunes MS; Ha SB; Tewari-Singh N; Morey KJ; Trofka AM; Kugrens P; Deyholos M; Medford JI
    Plant Biotechnol J; 2006 Nov; 4(6):605-22. PubMed ID: 17309732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis.
    Zhang DW; Yuan S; Xu F; Zhu F; Yuan M; Ye HX; Guo HQ; Lv X; Yin Y; Lin HH
    Plant Cell Environ; 2016 Jan; 39(1):12-25. PubMed ID: 25158995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll.
    Pätsikkä E; Kairavuo M; Sersen F; Aro EM; Tyystjärvi E
    Plant Physiol; 2002 Jul; 129(3):1359-67. PubMed ID: 12114589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of water stress on the development of the photosynthetic apparatus in greening leaves.
    Alberte RS; Fiscus EL; Naylor AW
    Plant Physiol; 1975 Feb; 55(2):317-21. PubMed ID: 16659074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of chloroplast development in Euglena by streptomycin: Differential inhibition of the appearance of photosynthesis in the presence of the continued synthesis of chlorophyll.
    Diamond J
    Planta; 1976 Jan; 130(2):145-9. PubMed ID: 24424591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-temperature fluorescence spectra of greening bean leaves.
    GOEDHEER JC
    Biochim Biophys Acta; 1961 Oct; 53():420-2. PubMed ID: 13899454
    [No Abstract]   [Full Text] [Related]  

  • 40. Changes in Mitochondrial Properties Associated with Chloroplast Development in Jack Bean (Canavalia ensiformis [L] DC.).
    Bourque DP; Naylor AW
    Plant Physiol; 1972 May; 49(5):826-35. PubMed ID: 16658056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.