These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 16592197)

  • 1. On the mechanism of oscillations in the "beating mercury heart".
    Lin SW; Keizer J; Rock PA; Stenschke H
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4477-81. PubMed ID: 16592197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization using environmental coupling in mercury beating heart oscillators.
    Singla T; Montoya F; Rivera M; Tajima S; Nakabayashi S; Parmananda P
    Chaos; 2016 Jun; 26(6):063103. PubMed ID: 27368768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control, synchronization, and enhanced reliability of aperiodic oscillations in the Mercury Beating Heart system.
    Kumar P; Parmananda P
    Chaos; 2018 Apr; 28(4):045105. PubMed ID: 31906652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization in autonomous mercury beating heart systems.
    Verma DK; Singh H; Contractor AQ; Parmananda P
    J Phys Chem A; 2014 Jul; 118(26):4647-51. PubMed ID: 24896219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evidence of explosive synchronization in mercury beating-heart oscillators.
    Kumar P; Verma DK; Parmananda P; Boccaletti S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062909. PubMed ID: 26172774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a Voltage-Stimulated Heartbeat Effect in Droplets of Liquid Gallium.
    Yu Z; Chen Y; Yun FF; Cortie D; Jiang L; Wang X
    Phys Rev Lett; 2018 Jul; 121(2):024302. PubMed ID: 30085744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Al-assisted high frequency self-powered oscillations of liquid metal droplets.
    Chen S; Yang X; Wang H; Wang R; Liu J
    Soft Matter; 2019 Nov; 15(44):8971-8975. PubMed ID: 31603451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory activity regulation in an ensemble of autonomous mercury beating heart oscillators.
    Biswas A; Kumar P; Das D; Parmananda P
    Phys Rev E; 2019 Mar; 99(3-1):032223. PubMed ID: 30999453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are there intracellular Ca2+ oscillations correlated with flagellar beating in human sperm? A three vs. two-dimensional analysis.
    Corkidi G; Montoya F; Hernández-Herrera P; Ríos-Herrera WA; Müller MF; Treviño CL; Darszon A
    Mol Hum Reprod; 2017 Sep; 23(9):583-593. PubMed ID: 28911211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential-dependent topological modes in the mercury beating heart system.
    Verma DK; Contractor AQ; Parmananda P
    J Phys Chem A; 2013 Jan; 117(2):267-74. PubMed ID: 23276204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kuramoto transition in an ensemble of mercury beating heart systems.
    Verma DK; Singh H; Parmananda P; Contractor AQ; Rivera M
    Chaos; 2015 Jun; 25(6):064609. PubMed ID: 26117134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extensive study of shape and surface structure formation in the mercury beating heart system.
    Ramírez-Álvarez E; Ocampo-Espindola JL; Montoya F; Yousif F; Vázquez F; Rivera M
    J Phys Chem A; 2014 Nov; 118(45):10673-8. PubMed ID: 25343208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization of electrochemical oscillators with differential coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the origin of damped electrochemical oscillations at silicon anodes (revisited).
    Proost J; Blaffart F; Turner S; Idrissi H
    Chemphyschem; 2014 Oct; 15(14):3116-24. PubMed ID: 25164094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic mechanism for self-organized quasiperiodicity in random networks of nonlinear oscillators.
    Burioni R; di Santo S; di Volo M; Vezzani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042918. PubMed ID: 25375578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuating Dynamics of Nanoscale Chemical Oscillations: Theory and Experiments.
    Barroo C; De Decker Y; Visart de Bocarmé T; Gaspard P
    J Phys Chem Lett; 2015 Jun; 6(12):2189-93. PubMed ID: 26266590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism and chemical kinetic description of nitrobenzene liquid membrane oscillator containing benzyldimethyltetradecylammonium chloride surfactant.
    Szpakowska M; Plocharska-Jankowska E; Nagy OB
    J Phys Chem B; 2009 Nov; 113(47):15503-12. PubMed ID: 19877666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of myocardial oxygen consumption in fibrillating dog hearts. Comparison between normothermia and hypothermia.
    Yaku H; Goto Y; Ohgoshi Y; Kawaguchi O; Oga K; Oka T; Suga H
    J Thorac Cardiovasc Surg; 1993 Apr; 105(4):679-88. PubMed ID: 8469002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular Ca2+ oscillations, a potential pacemaking mechanism in early embryonic heart cells.
    Sasse P; Zhang J; Cleemann L; Morad M; Hescheler J; Fleischmann BK
    J Gen Physiol; 2007 Aug; 130(2):133-44. PubMed ID: 17664344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum.
    Starosvetsky Y; Ben-Meir Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062919. PubMed ID: 23848760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.