These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16592213)

  • 1. Condensation time of the solar nebula from extinct I in primitive meteorites.
    Lewis RS; Anders E
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):268-73. PubMed ID: 16592213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iodine-129/xenon-129 age of magnetite from the orgueil meteorite.
    Herzog GF; Anders E; Alexander EC; Davis PK; Lewis RS
    Science; 1973 May; 180(4085):489-91. PubMed ID: 17817809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early aqueous activity on primitive meteorite parent bodies.
    Endress M; Zinner E; Bischoff A
    Nature; 1996 Feb; 379(6567):701-3. PubMed ID: 8602215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The primitive matrix components of the unique carbonaceous chondrite Acfer 094: a TEM study.
    Greshake A
    Geochim Cosmochim Acta; 1997 Jan; 61(2):437-52. PubMed ID: 11539920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale thermal events in the solar nebula: evidence from Fe,Ni metal grains in primitive meteorites.
    Meibom A; Desch SJ; Krot AN; Cuzzi JN; Petaev MI; Wilson L; Keil K
    Science; 2000 May; 288(5467):839-41. PubMed ID: 10797001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stardust silicates from primitive meteorites.
    Nagashima K; Krot AN; Yurimoto H
    Nature; 2004 Apr; 428(6986):921-4. PubMed ID: 15118720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition.
    Tartèse R; Chaussidon M; Gurenko A; Delarue F; Robert F
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8535-8540. PubMed ID: 30082400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkali magmatism on a carbonaceous chondrite planetesimal.
    Aléon J; Aléon-Toppani A; Platevoet B; Bardintzeff JM; McKeegan KD; Brisset F
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8353-8359. PubMed ID: 32229558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbynes: carriers of primordial noble gases in meteorites.
    Whittaker AG; Watts EJ; Lewis RS; Anders E
    Science; 1980 Sep; 209(4464):1512-4. PubMed ID: 17745959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface.
    Kerridge JF; Mackay AL; Boynton WV
    Science; 1979 Jul; 205(4404):395-7. PubMed ID: 17790849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile fractionation in the early solar system and chondrule/matrix complementarity.
    Bland PA; Alard O; Benedix GK; Kearsley AT; Menzies ON; Watt LE; Rogers NW
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13755-60. PubMed ID: 16174733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraterrestrial amino acids in Orgueil and Ivuna: tracing the parent body of CI type carbonaceous chondrites.
    Ehrenfreund P; Glavin DP; Botta O; Cooper G; Bada JL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2138-41. PubMed ID: 11226205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of fossil asteroidal ice in primitive meteorite Acfer 094.
    Matsumoto M; Tsuchiyama A; Nakato A; Matsuno J; Miyake A; Kataoka A; Ito M; Tomioka N; Kodama Y; Uesugi K; Takeuchi A; Nakano T; Vaccaro E
    Sci Adv; 2019 Nov; 5(11):eaax5078. PubMed ID: 31799392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paraffinic hydrocarbons in the Orgueil, Murray, Mokoia and other meteorites.
    Oro J; Nooner DW; Zlatkis A; Wikstrom SA
    Life Sci Space Res; 1966; 4():63-100. PubMed ID: 11915889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonaceous chondrite meteorites experienced fluid flow within the past million years.
    Turner S; McGee L; Humayun M; Creech J; Zanda B
    Science; 2021 Jan; 371(6525):164-167. PubMed ID: 33414218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga).
    Morrison SM; Hazen RM
    Am Mineral; 2020 Oct; 105(10):1508-1535. PubMed ID: 33958805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for Widespread 26Al in the Solar Nebula and Constraints for Nebula Time Scales.
    Russell SS; Srinivasan G; Huss GR; Wasserburg GJ; MacPherson GJ
    Science; 1996 Aug; 273(5276):757-62. PubMed ID: 8670407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meteorites: messengers from the early solar system.
    Hofmann BA
    Chimia (Aarau); 2010; 64(10):736-40. PubMed ID: 21138163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The early evolution of the inner solar system: a meteoritic perspective.
    O'D Alexander CM; Boss AP; Carlson RW
    Science; 2001 Jul; 293(5527):64-8. PubMed ID: 11441173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined mass-dependent and nucleosynthetic isotope variations in refractory inclusions and their mineral separates to determine their original Fe isotope compositions.
    Shollenberger QR; Wittke A; Render J; Mane P; Schuth S; Weyer S; Gussone N; Wadhwa M; Brennecka GA
    Geochim Cosmochim Acta; 2019 Oct; 263():215-234. PubMed ID: 33353988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.