BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16593018)

  • 1. Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings.
    Perchorowicz JT; Raynes DA; Jensen RG
    Proc Natl Acad Sci U S A; 1981 May; 78(5):2985-9. PubMed ID: 16593018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthesis and Activation of Ribulose Bisphosphate Carboxylase in Wheat Seedlings : Regulation by CO(2) and O(2).
    Perchorowicz JT; Jensen RG
    Plant Physiol; 1983 Apr; 71(4):955-60. PubMed ID: 16662935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family.
    Sugita M; Gruissem W
    Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7104-8. PubMed ID: 3478683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-dependent assembly of ribulose-1,5-bisphosphate carboxylase.
    Bloom MV; Milos P; Roy H
    Proc Natl Acad Sci U S A; 1983 Feb; 80(4):1013-7. PubMed ID: 16593277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthesis and Activity of Ribulose Bisphosphate Carboxylase of Wheat and Maize Seedlings during and following Exposure to O(2)-Low, CO(2)-Free N(2).
    Gustafson SW; Raynes DA; Jensen RG
    Plant Physiol; 1987 Jan; 83(1):170-6. PubMed ID: 16665196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Regulation of Photosynthesis in Leaves of Field-Grown Spring Wheat (Triticum aestivum L., cv Albis) at Different Levels of Ozone in Ambient Air.
    Lehnherr B; Mächler F; Grandjean A; Fuhrer J
    Plant Physiol; 1988 Dec; 88(4):1115-9. PubMed ID: 16666430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen and Photosynthesis in the Flag Leaf of Wheat (Triticum aestivum L.).
    Evans JR
    Plant Physiol; 1983 Jun; 72(2):297-302. PubMed ID: 16662996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of irradiance on growth, photosynthesis, and water use efficiency of seedlings of the chaparral shrub, Ceanothus megacarpus.
    Mahall BE; Schlesinger WH
    Oecologia; 1982 Sep; 54(3):291-299. PubMed ID: 28309950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for light-dependent regulation of ribulose-1,5-bisphosphate carboxylase activity and photosynthesis in intact leaves.
    Kobza J; Seemann JR
    Proc Natl Acad Sci U S A; 1988 Jun; 85(11):3815-9. PubMed ID: 16593934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ribulose bisphosphate carboxylase activity in vivo by a light-modulated inhibitor of catalysis.
    Seemann JR; Berry JA; Freas SM; Krump MA
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):8024-8. PubMed ID: 16593629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of irradiance during growth of Glycine max on photosynthetic capacity and percent activation of ribulose 1,5-bisphosphate carboxylase.
    Torisky RS; Servaites JC
    Photosynth Res; 1984 Sep; 5(3):251-61. PubMed ID: 24458701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of photosynthesis in nitrogen deficient wheat seedlings.
    Mächler F; Oberson A; Grub A; Nösberger J
    Plant Physiol; 1988 May; 87(1):46-9. PubMed ID: 16666124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein degradation in lemna with particular reference to ribulose bisphosphate carboxylase: I. The effect of light and dark.
    Ferreira RB; Davies DD
    Plant Physiol; 1987 Apr; 83(4):869-77. PubMed ID: 16665354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-free synthesis of leaf protein: Identification of an apparent precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase.
    Cashmore AR; Broadhurst MK; Gray RE
    Proc Natl Acad Sci U S A; 1978 Feb; 75(2):655-9. PubMed ID: 16592495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthesis and Ribulose 1,5-Bisphosphate Concentrations in Intact Leaves of Xanthium strumarium L.
    Mott KA; Jensen RG; O'leary JW; Berry JA
    Plant Physiol; 1984 Dec; 76(4):968-71. PubMed ID: 16663982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.
    Yamori W; Masumoto C; Fukayama H; Makino A
    Plant J; 2012 Sep; 71(6):871-80. PubMed ID: 22563799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus×giganteus: changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism.
    Sun W; Ubierna N; Ma JY; Cousins AB
    Plant Cell Environ; 2012 May; 35(5):982-93. PubMed ID: 22082455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy.
    Yin X; Struik PC; Romero P; Harbinson J; Evers JB; VAN DER Putten PE; Vos J
    Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.].
    Way DA; Sage RF
    Plant Cell Environ; 2008 Sep; 31(9):1250-62. PubMed ID: 18532986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity.
    Taylor SH; Long SP
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.