These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 16593198)

  • 21. Transport from symbiotic algae and symbiotic chloroplasts to host cells.
    Smith DC
    Symp Soc Exp Biol; 1974; (28):485-520. PubMed ID: 4616402
    [No Abstract]   [Full Text] [Related]  

  • 22. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria.
    Kodama Y; Fujishima M
    FEMS Microbiol Ecol; 2014 Dec; 90(3):946-55. PubMed ID: 25348325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Responses triggered in chloroplast of Chlorella variabilis NC64A by long-term association with Paramecium bursaria.
    Minaeva E; Ermilova E
    Protoplasma; 2017 Jul; 254(4):1769-1776. PubMed ID: 28074287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Colchicine, nocodazole and trifluralin: different effects of microtubule polymerization inhibitors on the uptake and migration of endosymbiotic algae in Hydra viridis.
    Fracek S; Margulis L
    Cytobios; 1979; 25(97):7-16. PubMed ID: 527381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Symbiotic ciliates receive protection against UV damage from their algae: a test with Paramecium bursaria and Chlorella.
    Summerer M; Sonntag B; Hörtnagl P; Sommaruga R
    Protist; 2009 May; 160(2):233-43. PubMed ID: 19195930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative demonstration of cell surface involvement in a plant-animal symbiosis: lectin inhibition of reassociation.
    Meints RH; Pardy RL
    J Cell Sci; 1980 Jun; 43():239-51. PubMed ID: 7419619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Analyses of the Symbiotic Associations of the Host Paramecium bursaria with Free-Living and Native Symbiotic Species of Chlorella.
    Kodama Y; Endoh Y
    Curr Microbiol; 2024 Jan; 81(2):66. PubMed ID: 38231280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ciliate Paramecium bursaria allows budding of symbiotic Chlorella variabilis cells singly from the digestive vacuole membrane into the cytoplasm during algal reinfection.
    Kodama Y; Sumita H
    Protoplasma; 2022 Jan; 259(1):117-125. PubMed ID: 33881616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Participation of algal surface structures in the cell recognition process during infection of aposymbiotic Paramecium bursaria with symbiotic chlorellae.
    Reisser W; Radunz A; Wiessner W
    Cytobios; 1982; 33(129):39-50. PubMed ID: 7105840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A green Paramecium strain with abnormal growth of symbiotic algae.
    Irie K; Furukawa S; Kadono T; Kawano T
    Z Naturforsch C J Biosci; 2010; 65(11-12):681-7. PubMed ID: 21319710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synchronous induction of detachment and reattachment of symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria.
    Kodama Y; Fujishima M
    Protist; 2013 Sep; 164(5):660-72. PubMed ID: 23912150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of host ciliate Paramecium bursaria mitochondria and trichocysts for symbiotic Chlorella variabilis attachment beneath the host cell cortex.
    Kodama Y; Fujishima M
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 37660246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physical characterization of PBCV virus by sedimentation field flow fractionation.
    Yonker CR; Caldwell KD; Giddings JC; Van Etten JL
    J Virol Methods; 1985 Jun; 11(2):145-60. PubMed ID: 4019700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The morphology of green hydra endosymbionts as influenced by host strain and host environment.
    Pardy RL
    J Cell Sci; 1976 May; 20(3):655-69. PubMed ID: 178679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Symbiotic Chlorella sp. of the ciliate Paramecium bursaria do not prevent acidification and lysosomal fusion of host digestive vacuoles during infection.
    Kodama Y; Fujishima M
    Protoplasma; 2005 Oct; 225(3-4):191-203. PubMed ID: 15997335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Symbiotic alga Chlorella vulgaris of the ciliate Paramecium bursaria shows temporary resistance to host lysosomal enzymes during the early infection process.
    Kodama Y; Nakahara M; Fujishima M
    Protoplasma; 2007; 230(1-2):61-7. PubMed ID: 17111098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photobehaviour of Paramecium bursaria infected with different symbiotic and aposymbiotic species of Chlorella.
    Niess D; Reisser W; Wiessner W
    Planta; 1982 Dec; 156(5):475-80. PubMed ID: 24272662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of hypergravity on the Paramecium bursaria-Chlorella sp. symbiotic association.
    Bator T; Pado R
    Z Naturforsch C J Biosci; 2009; 64(9-10):743-6. PubMed ID: 19957445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and cultivation of endosymbiotic algae from green hydra and phylogenetic analysis of 18S rDNA sequences.
    Kovacević G; Franjević D; Jelencić B; Kalafatić M
    Folia Biol (Krakow); 2010; 58(1-2):135-43. PubMed ID: 20420208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydra viridis: transfer of metabolites between Hydra and symbiotic algae.
    Thorington G; Margulis L
    Biol Bull; 1981 Feb; 160(1):175-88. PubMed ID: 6164406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.