These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1659326)

  • 21. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI; Qureshi A
    Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of O2.- in the production of HO.: in vitro and in vivo.
    Liochev SI; Fridovich I
    Free Radic Biol Med; 1994 Jan; 16(1):29-33. PubMed ID: 8299992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of NADH by vanadium compounds in the presence of thiols.
    Keller RJ; Coulombe RA; Sharma RP; Grover TA; Piette LH
    Arch Biochem Biophys; 1989 May; 271(1):40-8. PubMed ID: 2540716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxyl radical generation: the effect of bicarbonate, dioxygen and buffer concentration on pH-dependent chemiluminescence.
    Oosthuizen MM; Greyling D
    Redox Rep; 2001; 6(2):105-16. PubMed ID: 11450981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of sodium percarbonate by vanadium for the degradation of aniline in water: Mechanism and identification of reactive species.
    Li L; Huang J; Hu X; Zhang S; Dai Q; Chai H; Gu L
    Chemosphere; 2019 Jan; 215():647-656. PubMed ID: 30347359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of aluminum on the vanadium-mediated oxidation of NADH.
    Adler AJ; Caruso C; Berlyne GM
    Nephron; 1995; 69(1):34-40. PubMed ID: 7891795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1989 Dec; 275(2):540-50. PubMed ID: 2556968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flavoenzymes reduce vanadium(V) and molecular oxygen and generate hydroxyl radical.
    Shi XL; Dalal NS
    Arch Biochem Biophys; 1991 Sep; 289(2):355-61. PubMed ID: 1654858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superoxide radical initiates the autoxidation of dihydroxyacetone.
    Mashino T; Fridovich I
    Arch Biochem Biophys; 1987 May; 254(2):547-51. PubMed ID: 3034165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple reactions in vanadyl-V(IV) oxidation by H2O2.
    Shankar HN; Ramasarma T
    Mol Cell Biochem; 1993 Dec; 129(1):9-29. PubMed ID: 8177231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Further studies of the mechanism of the enhancement of NADH oxidation by vanadate.
    Liochev S; Fridovich I
    J Free Radic Biol Med; 1985; 1(4):287-92. PubMed ID: 3013979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vanadate-induced activation of activator protein-1: role of reactive oxygen species.
    Ding M; Li JJ; Leonard SS; Ye JP; Shi X; Colburn NH; Castranova V; Vallyathan V
    Carcinogenesis; 1999 Apr; 20(4):663-8. PubMed ID: 10223197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced oxidation of NAD(P)H by oxidants in the presence of dehydrogenases but no evidence for a superoxide-propagated chain oxidation of the bound coenzymes.
    Petrat F; Bramey T; Kirsch M; Kerkweg U; De Groot H
    Free Radic Res; 2006 Aug; 40(8):857-63. PubMed ID: 17015264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin.
    Kocha T; Yamaguchi M; Ohtaki H; Fukuda T; Aoyagi T
    Biochim Biophys Acta; 1997 Feb; 1337(2):319-26. PubMed ID: 9048910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyanide-insensitive NADH oxidation by subcellular fractions isolated from human polymorphonuclear blood cells.
    Auclair C; Torres M; Cramer E; Hakim J
    Enzyme; 1978; 23(4):225-37. PubMed ID: 212265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The relative effectiveness of .OH, H2O2, O2-, and reducing free radicals in causing damage to biomembranes. A study of radiation damage to erythrocyte ghosts using selective free radical scavengers.
    Kong S; Davison AJ
    Biochim Biophys Acta; 1981 Jan; 640(1):313-25. PubMed ID: 6260172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.