These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 16593451)

  • 1. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase.
    Tien M; Kirk TK
    Proc Natl Acad Sci U S A; 1984 Apr; 81(8):2280-4. PubMed ID: 16593451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysosporium Burds.
    Kirk TK; Mozuch MD; Tien M
    Biochem J; 1985 Mar; 226(2):455-60. PubMed ID: 2986597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium.
    Rieble S; Joshi DK; Gold MH
    J Bacteriol; 1994 Aug; 176(16):4838-44. PubMed ID: 8050996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin.
    Kirk TK; Tien M; Kersten PJ; Mozuch MD; Kalyanaraman B
    Biochem J; 1986 May; 236(1):279-87. PubMed ID: 3024619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium.
    Teramoto H; Tanaka H; Wariishi H
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):312-7. PubMed ID: 15448939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of oxidative C alpha-C beta cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Stoichiometry and involvement of free radicals.
    Hammel KE; Tien M; Kalyanaraman B; Kirk TK
    J Biol Chem; 1985 Jul; 260(14):8348-53. PubMed ID: 2989288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectrocatalytic properties of lignin peroxidase from Phanerochaete chrysosporium in reactions with phenols, catechols and lignin-model compounds.
    Ferapontova EE; Castillo J; Gorton L
    Biochim Biophys Acta; 2006 Sep; 1760(9):1343-54. PubMed ID: 16781814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry of the oxidation of lignin by Phanerochaete chrysosporium.
    Kirk TK; Tien M; Faison BD
    Biotechnol Adv; 1984; 2(2):183-99. PubMed ID: 14545695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of two 1,2,4-trihydroxybenzene 1,2-dioxygenases from Phanerochaete chrysosporium.
    Kato H; Furusawa TT; Mori R; Suzuki H; Kato M; Shimizu M
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4499-4509. PubMed ID: 35687156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship Between Lignin Degradation and Production of Reduced Oxygen Species by Phanerochaete chrysosporium.
    Faison BD; Kirk TK
    Appl Environ Microbiol; 1983 Nov; 46(5):1140-5. PubMed ID: 16346420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds.
    Jokela J; Pellinen J; Salkinoja-Salonen M
    Appl Environ Microbiol; 1987 Nov; 53(11):2642-9. PubMed ID: 16347484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate free radicals are intermediates in ligninase catalysis.
    Hammel KE; Kalyanaraman B; Kirk TK
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3708-12. PubMed ID: 3012530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase.
    Hammel KE; Kalyanaraman B; Kirk TK
    J Biol Chem; 1986 Dec; 261(36):16948-52. PubMed ID: 3023375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation.
    Thanh Mai Pham L; Kim YH
    Enzyme Microb Technol; 2016 Jan; 82():66-73. PubMed ID: 26672450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phanerochaete chrysosporium Multienzyme Catabolic System for in Vivo Modification of Synthetic Lignin to Succinic Acid.
    Hong CY; Ryu SH; Jeong H; Lee SS; Kim M; Choi IG
    ACS Chem Biol; 2017 Jul; 12(7):1749-1759. PubMed ID: 28463479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and improvement of lignin-degrading microorganisms: potential strategy based on lignin model-amino Acid adducts.
    Tien M; Kersten PJ; Kirk TK
    Appl Environ Microbiol; 1987 Feb; 53(2):242-5. PubMed ID: 16347273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes.
    Kersten PJ; Tien M; Kalyanaraman B; Kirk TK
    J Biol Chem; 1985 Mar; 260(5):2609-12. PubMed ID: 2982828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium.
    Kelley RL; Reddy CA
    J Bacteriol; 1986 Apr; 166(1):269-74. PubMed ID: 3957868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium.
    Kersten P; Cullen D
    Fungal Genet Biol; 2007 Feb; 44(2):77-87. PubMed ID: 16971147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of ligninase from Phanerochaete chrysosporium and their possible applications.
    Tien M
    Crit Rev Microbiol; 1987; 15(2):141-68. PubMed ID: 3322681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.