These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16593647)

  • 1. Specific heat shock proteins are transported into chloroplasts.
    Vierling E; Mishkind ML; Schmidt GW; Key JL
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):361-5. PubMed ID: 16593647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein in the chloroplast membranes of peas and Chlamydomonas reinhardi.
    Kloppstech K; Meyer G; Schuster G; Ohad I
    EMBO J; 1985 Aug; 4(8):1901-9. PubMed ID: 16453628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient in vitro import of a cytosolic heat shock protein into pea chloroplasts.
    Lubben TH; Keegstra K
    Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5502-6. PubMed ID: 16593735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation, stability, and localization of a major chloroplast heat-shock protein.
    Chen Q; Lauzon LM; DeRocher AE; Vierling E
    J Cell Biol; 1990 Jun; 110(6):1873-83. PubMed ID: 2351688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamily of heat shock proteins.
    Vierling E; Nagao RT; DeRocher AE; Harris LM
    EMBO J; 1988 Mar; 7(3):575-81. PubMed ID: 3396532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent binding to the thylakoid membranes of nuclear-coded chloroplast heat-shock proteins.
    Glaczinski H; Kloppstech K
    Eur J Biochem; 1988 May; 173(3):579-83. PubMed ID: 3371348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat-stress induced synthesis of chloroplast protein synthesis elongation factor (EF-Tu) in a heat-tolerant maize line.
    Bhadula SK; Elthon TE; Habben JE; Helentjaris TG; Jiao S; Ristic Z
    Planta; 2001 Feb; 212(3):359-66. PubMed ID: 11289600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of protein synthesis in isolated higher plant chloroplasts. Identification of paused translation intermediates.
    Mullet JE; Klein RR; Grossman AR
    Eur J Biochem; 1986 Mar; 155(2):331-8. PubMed ID: 3956489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena.
    Sláviková S; Vacula R; Fang Z; Ehara T; Osafune T; Schwartzbach SD
    J Cell Sci; 2005 Apr; 118(Pt 8):1651-61. PubMed ID: 15797929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The major low-molecular-weight heat shock protein in chloroplasts shows antigenic conservation among diverse higher plant species.
    Vierling E; Harris LM; Chen Q
    Mol Cell Biol; 1989 Feb; 9(2):461-8. PubMed ID: 2710111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 21-kDa chloroplast heat shock protein assembles into high molecular weight complexes in vivo and in Organelle.
    Chen Q; Osteryoung K; Vierling E
    J Biol Chem; 1994 May; 269(18):13216-23. PubMed ID: 8175751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, sequence analysis, and expression of a cDNA encoding a plastid-localized heat shock protein in maize.
    Nieto-Sotelo J; Vierling E; Ho TH
    Plant Physiol; 1990 Aug; 93(4):1321-8. PubMed ID: 16667620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthetic cause of in vivo acquired thermotolerance of photosynthetic light reactions and metabolic responses of chloroplasts to heat stress.
    Süss KH; Yordanov IT
    Plant Physiol; 1986 May; 81(1):192-9. PubMed ID: 16664773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of gene expression in corn (Zea mays L.) by heat shock. II. In vitro analysis of RNAs from heat-shocked seedlings.
    Baszczynski CL; Walden DB; Atkinson BG
    Can J Biochem Cell Biol; 1983 Jun; 61(6):395-403. PubMed ID: 6192887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein synthesis in chloroplasts. Characteristics and products of protein synthesis in vitro in etioplasts and developing chloroplasts from pea leaves.
    Siddell SG; Ellis RJ
    Biochem J; 1975 Mar; 146(3):675-85. PubMed ID: 1147911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vitro transport of chloroplast proteins in a homologousEuglena system with particular reference to plastid leucyl-tRNA synthetase.
    Reinbothe S; Krauspe R; Parthier B
    Planta; 1990 May; 181(2):176-83. PubMed ID: 24196733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat shock proteins of higher plants.
    Key JL; Lin CY; Chen YM
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3526-30. PubMed ID: 16593032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock response of the chloroplast genome in Vigna sinensis.
    Krishnasamy S; Mannan RM; Krishnan M; Gnanam A
    J Biol Chem; 1988 Apr; 263(11):5104-9. PubMed ID: 3356681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastid Development in Pisum sativum Leaves during Greening : II. Post-Translational Uptake by Plastids as an Indicator System to Monitor Changes in Translatable mRNA for Nuclear-Encoded Plastid Polypeptides.
    Dietz KJ; Bogorad L
    Plant Physiol; 1987 Nov; 85(3):816-22. PubMed ID: 16665783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone.
    Lubben TH; Donaldson GK; Viitanen PV; Gatenby AA
    Plant Cell; 1989 Dec; 1(12):1223-30. PubMed ID: 2577724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.