These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 16593768)
1. Location of the cyclohexene ring of the chromophore of bacteriorhodopsin by neutron diffraction with selectively deuterated retinal. Seiff F; Westerhausen J; Wallat I; Heyn MP Proc Natl Acad Sci U S A; 1986 Oct; 83(20):7746-50. PubMed ID: 16593768 [TBL] [Abstract][Full Text] [Related]
2. A neutron diffraction study on the location of the polyene chain of retinal in bacteriorhodopsin. Seiff F; Wallat I; Ermann P; Heyn MP Proc Natl Acad Sci U S A; 1985 May; 82(10):3227-31. PubMed ID: 3858820 [TBL] [Abstract][Full Text] [Related]
3. High-sensitivity neutron diffraction of membranes: Location of the Schiff base end of the chromophore of bacteriorhodopsin. Heyn MP; Westerhausen J; Wallat I; Seiff F Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2146-50. PubMed ID: 16593918 [TBL] [Abstract][Full Text] [Related]
4. Transmembrane location of retinal in bacteriorhodopsin by neutron diffraction. Hauss T; Grzesiek S; Otto H; Westerhausen J; Heyn MP Biochemistry; 1990 May; 29(20):4904-13. PubMed ID: 2364067 [TBL] [Abstract][Full Text] [Related]
5. Light-induced isomerization causes an increase in the chromophore tilt in the M intermediate of bacteriorhodopsin: a neutron diffraction study. Hauss T; Büldt G; Heyn MP; Dencher NA Proc Natl Acad Sci U S A; 1994 Dec; 91(25):11854-8. PubMed ID: 7991546 [TBL] [Abstract][Full Text] [Related]
6. Location of chemically modified lysine 41 in the structure of bacteriorhodopsin by neutron diffraction. Seiff F; Wallat I; Westerhausen J; Heyn MP Biophys J; 1986 Oct; 50(4):629-35. PubMed ID: 19431687 [TBL] [Abstract][Full Text] [Related]
7. Retinal location in purple membrane of Halobacterium halobium: a neutron diffraction study of membranes labelled in vivo with deuterated retinal. Jubb JS; Worcester DL; Crespi HL; Zaccaï G EMBO J; 1984 Jul; 3(7):1455-61. PubMed ID: 6745237 [TBL] [Abstract][Full Text] [Related]
8. Location of the chromophore in bacteriorhodopsin. King GI; Mowery PC; Stoeckenius W; Crespi HL; Schoenborn BP Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4726-30. PubMed ID: 6933519 [TBL] [Abstract][Full Text] [Related]
9. Linking regions between helices in bacteriorhodopsin revealed. Agard DA; Stroud RM Biophys J; 1982 Mar; 37(3):589-602. PubMed ID: 7074187 [TBL] [Abstract][Full Text] [Related]
10. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes. Moltke S; Nevzorov AA; Sakai N; Wallat I; Job C; Nakanishi K; Heyn MP; Brown MF Biochemistry; 1998 Aug; 37(34):11821-35. PubMed ID: 9718305 [TBL] [Abstract][Full Text] [Related]
11. Assignment of segments of the bacteriorhodopsin sequence to positions in the structural map. Trewhella J; Anderson S; Fox R; Gogol E; Khan S; Engelman D; Zaccai G Biophys J; 1983 Jun; 42(3):233-41. PubMed ID: 6871370 [TBL] [Abstract][Full Text] [Related]
12. Tertiary structure of bacteriorhodopsin. Positions and orientations of helices A and B in the structural map determined by neutron diffraction. Popot JL; Engelman DM; Gurel O; Zaccaï G J Mol Biol; 1989 Dec; 210(4):829-47. PubMed ID: 2614846 [TBL] [Abstract][Full Text] [Related]
13. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8. Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527 [TBL] [Abstract][Full Text] [Related]
14. Location of platinum binding sites on bacteriorhodopsin by electron diffraction. Dumont ME; Wiggins JW; Hayward SB Proc Natl Acad Sci U S A; 1981 May; 78(5):2947-51. PubMed ID: 16593014 [TBL] [Abstract][Full Text] [Related]
15. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin. Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719 [TBL] [Abstract][Full Text] [Related]
16. Participation of bacteriorhodopsin active-site lysine backbone in vibrations associated with retinal photochemistry. Gat Y; Grossjean M; Pinevsky I; Takei H; Rothman Z; Sigrist H; Lewis A; Sheves M Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2434-8. PubMed ID: 1549607 [TBL] [Abstract][Full Text] [Related]
17. Structure of the interhelical loops and carboxyl terminus of bacteriorhodopsin by X-ray diffraction using site-directed heavy-atom labeling. Behrens W; Alexiev U; Mollaaghababa R; Khorana HG; Heyn MP Biochemistry; 1998 Jul; 37(29):10411-9. PubMed ID: 9671510 [TBL] [Abstract][Full Text] [Related]
18. Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction. Dencher NA; Dresselhaus D; Zaccai G; Büldt G Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7876-9. PubMed ID: 2554293 [TBL] [Abstract][Full Text] [Related]
19. Site of attachment of retinal in bacteriorhodopsin. Bayley H; Huang KS; Radhakrishnan R; Ross AH; Takagaki Y; Khorana HG Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2225-9. PubMed ID: 6941281 [TBL] [Abstract][Full Text] [Related]
20. Location of an extrinsic label in the primary and tertiary structure of bacteriorhodopsin. Katre NV; Finer-Moore J; Stroud RM; Hayward SB Biophys J; 1984 Aug; 46(2):195-203. PubMed ID: 6478034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]