BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 16593800)

  • 1. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation.
    Shanklin J; Jabben M; Vierstra RD
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):359-63. PubMed ID: 16593800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin-phytochrome conjugates. Pool dynamics during in vivo phytochrome degradation.
    Jabben M; Shanklin J; Vierstra RD
    J Biol Chem; 1989 Mar; 264(9):4998-5005. PubMed ID: 2538468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red light-induced accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots.
    Jabben M; Shanklin J; Vierstra RD
    Plant Physiol; 1989 Jun; 90(2):380-4. PubMed ID: 16666778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Tobacco Expressing Functional Oat Phytochrome : Domains Responsible for the Rapid Degradation of Pfr Are Conserved between Monocots and Dicots.
    Cherry JR; Hershey HP; Vierstra RD
    Plant Physiol; 1991 Jul; 96(3):775-85. PubMed ID: 16668254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular localisation of phytochrome in oat coleoptiles by electron microscopy : Dependence on light pretreatments and the amount of the active, far-red-absorbing form.
    Hofmann E; Speth V; Schäfer E
    Planta; 1990 Feb; 180(3):372-7. PubMed ID: 24202016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro.
    Lagarias JC; Mercurio FM
    J Biol Chem; 1985 Feb; 260(4):2415-23. PubMed ID: 3882693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical differences between the red- and the far-red-absorbing forms of phytochrome.
    Hunt RE; Pratt LH
    Biochemistry; 1981 Feb; 20(4):941-5. PubMed ID: 7213624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation.
    Clough RC; Jordan-Beebe ET; Lohman KN; Marita JM; Walker JM; Gatz C; Vierstra RD
    Plant J; 1999 Jan; 17(2):155-67. PubMed ID: 10074713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A monoclonal antibody specific for the red-absorbing form of phytochrome.
    Holdsworth ML; Whitelam GC
    Planta; 1987 Dec; 172(4):539-47. PubMed ID: 24226075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification with Monoclonal Antibodies of a Second Antigenic Domain on Avena Phytochrome that Changes upon Its Photoconversion.
    Shimazaki Y; Cordonnier MM; Pratt LH
    Plant Physiol; 1986 Sep; 82(1):109-13. PubMed ID: 16664975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular localisation of phytochrome and ubiquitin in red-light-irradiated oat coleoptiles by electron microscopy.
    Speth V; Otto V; Schäfer E
    Planta; 1987 Jul; 171(3):332-8. PubMed ID: 24227432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oat Phytochrome Is Biologically Active in Transgenic Tomatoes.
    Boylan MT; Quail PH
    Plant Cell; 1989 Aug; 1(8):765-773. PubMed ID: 12359910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreversible change in the conformation of phytochrome as probed with a covalently bound fluorescent sulfhydryl reagent, N-(9-acridinyl)maleimide.
    Yamamoto KT
    Biochim Biophys Acta; 1993 Jun; 1163(3):227-33. PubMed ID: 8507660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential exposure of aromatic amino acids in the red-light-absorbing and far-red-light-absorbing forms of 124-kDa oat phytochrome.
    Singh BR; Song PS; Eilfeld P; Rüdiger W
    Eur J Biochem; 1989 Oct; 184(3):715-21. PubMed ID: 2806252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochrome-controlled extension growth of Avena sativa L. seedlings : I. Kinetic characterization of mesocotyl, coleoptile, and leaf responses.
    Schopfer P; Fidelak KH; Schäfer E
    Planta; 1982 May; 154(3):224-30. PubMed ID: 24276065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Destruction of Phytochrome in the Red-absorbing Form.
    Stone HJ; Pratt LH
    Plant Physiol; 1979 Apr; 63(4):680-2. PubMed ID: 16660790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of native oat phytochrome photoreversion: a time-resolved absorption investigation.
    Chen E; Lapko VN; Lewis JW; Song PS; Kliger DS
    Biochemistry; 1996 Jan; 35(3):843-50. PubMed ID: 8547264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrophotometric phytochrome measurements in light-grown Avena sativa L.
    Jabben M; Deitzer GF
    Planta; 1978 Jan; 143(3):309-13. PubMed ID: 24408470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemistry of 124 kilodalton Avena phytochrome in vitro.
    Vierstra RD; Quail PH
    Plant Physiol; 1983 May; 72(1):264-7. PubMed ID: 16662975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifications of Sulfhydryl Groups on Phytochrome and Their Influence on Physicochemical Differences between the Red- and Far-Red-Absorbing Forms.
    Smith WO; Cyr KL
    Plant Physiol; 1988 May; 87(1):195-200. PubMed ID: 16666102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.