These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16593813)

  • 1. Wave energy and intertidal productivity.
    Leigh EG; Paine RT; Quinn JF; Suchanek TH
    Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1314-8. PubMed ID: 16593813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of coastal upwelling on the functional structure of rocky intertidal communities.
    Bosman AL; Hockey PA; Siegfried WR
    Oecologia; 1987 May; 72(2):226-232. PubMed ID: 28311545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predation intensity in a rocky intertidal community : Relation between predator foraging activity and environmental harshness.
    Menge BA
    Oecologia; 1978 Jan; 34(1):1-16. PubMed ID: 28309384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intertidal sea stars (Pisaster ochraceus) alter body shape in response to wave action.
    Hayne KJ; Palmer AR
    J Exp Biol; 2013 May; 216(Pt 9):1717-25. PubMed ID: 23596283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale stability of an intertidal kelp (Postelsia palmaeformis) near its northern range edge through a period of prolonged heatwaves.
    Csordas M; Starko S; Neufeld CJ; Thompson SA; Baum JK
    Ann Bot; 2024 Mar; 133(1):61-72. PubMed ID: 37878014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased wave action promotes muscle performance but increasing temperatures cause a tenacity-endurance trade-off in intertidal snails (
    Clayman S; Seebacher F
    Conserv Physiol; 2019; 7(1):coz039. PubMed ID: 31333844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-range dispersal maintains a volatile marine metapopulation: the brown alga Postelsia palmaeformis.
    Paine RT; Buhle ER; Levin SA; Kareiva P
    Ecology; 2017 Jun; 98(6):1560-1573. PubMed ID: 28328145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ASYMMETRICAL DEVELOPMENTAL PLASTICITY IN AN INTERTIDAL SNAIL.
    Etter RJ
    Evolution; 1988 Mar; 42(2):322-334. PubMed ID: 28567855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental evaluation of competition between three species of intertidal prosobranch gastropods.
    Underwood AJ
    Oecologia; 1978 Jan; 33(2):185-202. PubMed ID: 28309163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Temporal comparison of the composition and zonation of rocky intertidal organisms at Cocos Island National Park, Pacific, Costa Rica].
    Sibaja-Cordero JA; Cortés J
    Rev Biol Trop; 2010 Dec; 58(4):1387-403. PubMed ID: 21250482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red algae respond to waves: morphological and mechanical variation in Mastocarpus papillatus along a gradient of force.
    Kitzes JA; Denny MW
    Biol Bull; 2005 Apr; 208(2):114-9. PubMed ID: 15837960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental analyses of the structure and dynamics of mid-shore rocky intertidal communities in New South Wales.
    Underwood AJ; Denley EJ; Moran MJ
    Oecologia; 1983 Feb; 56(2-3):202-219. PubMed ID: 28310196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geographical variation in the use of intertidal rocky shores by the lizard Microlophus atacamensis in relation to changes in terrestrial productivity along the Atacama Desert coast.
    Farina JM; Sepulveda M; Reyna MV; Wallem KP; Ossa-Zazzali PG
    J Anim Ecol; 2008 May; 77(3):458-68. PubMed ID: 18416712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradients of intertidal primary productivity around the coast of South Africa and their relationships with consumer biomass.
    Bustamante RH; Branch GM; Eekhout S; Robertson B; Zoutendyk P; Schleyer M; Dye A; Hanekom N; Keats D; Jurd M; McQuaid C
    Oecologia; 1995 May; 102(2):189-201. PubMed ID: 28306874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Between tide and wave marks: a unifying model of physical zonation on littoral shores.
    Bird CE; Franklin EC; Smith CM; Toonen RJ
    PeerJ; 2013; 1():e154. PubMed ID: 24109544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adding teeth to wave action: the destructive effects of wave-borne rocks on intertidal organisms.
    Shanks AL; Wright WG
    Oecologia; 1986 Jun; 69(3):420-428. PubMed ID: 28311345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disaster, Catastrophe, and Local Persistence of the Sea Palm Postelsia palmaeformis.
    Paine RT
    Science; 1979 Aug; 205(4407):685-7. PubMed ID: 17781258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure to solar radiation drives organismal vulnerability to climate: Evidence from an intertidal limpet.
    Chapperon C; Volkenborn N; Clavier J; Séité S; Seabra R; Lima FP
    J Therm Biol; 2016 Apr; 57():92-100. PubMed ID: 27033044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predation intensity in a rocky intertidal community : Effect of an algal canopy, wave action and desiccation on predator feeding rates.
    Menge BA
    Oecologia; 1978 Jan; 34(1):17-35. PubMed ID: 28309385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of sea otters and harlequin ducks in Prince William Sound, Alaska, USA, to shoreline oil residues 20 years after the Exxon Valdez oil spill.
    Neff JM; Page DS; Boehm PD
    Environ Toxicol Chem; 2011 Mar; 30(3):659-72. PubMed ID: 21298711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.