These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16594660)

  • 1. A second transition state for chain transfer to monomer in olefin polymerization promoted by group 4 metal catalysts.
    Talarico G; Budzelaar PH
    J Am Chem Soc; 2006 Apr; 128(14):4524-5. PubMed ID: 16594660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of activation of a hafnium pyridyl-amide olefin polymerization catalyst: ligand modification by monomer.
    Froese RD; Hustad PD; Kuhlman RL; Wenzel TT
    J Am Chem Soc; 2007 Jun; 129(25):7831-40. PubMed ID: 17542583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts: a comparative investigation of highly active catalyst systems across the transition series.
    van Meurs M; Britovsek GJ; Gibson VC; Cohen SA
    J Am Chem Soc; 2005 Jul; 127(27):9913-23. PubMed ID: 15998098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MgCl2/R'nAl(OR)3-n: an excellent activator/support for transition-metal complexes for olefin polymerization.
    Nakayama Y; Saito J; Bando H; Fujita T
    Chemistry; 2006 Oct; 12(29):7546-56. PubMed ID: 16900544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity and cooperativity effects in binuclear d(0) olefin polymerization catalysis. theoretical analysis of structure and reaction mechanism.
    Motta A; Fragalà IL; Marks TJ
    J Am Chem Soc; 2009 Mar; 131(11):3974-84. PubMed ID: 19249823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial donating ligands: a new strategy for late transition metal olefin polymerization catalysis.
    Leung DH; Ziller JW; Guan Z
    J Am Chem Soc; 2008 Jun; 130(24):7538-9. PubMed ID: 18494469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in olefin polymerization catalyzed by transition metal complexes: new catalysts and new reactions.
    Takeuchi D
    Dalton Trans; 2010 Jan; (2):311-28. PubMed ID: 20023962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision control of radical polymerization via transition metal catalysis: from dormant species to designed catalysts for precision functional polymers.
    Ouchi M; Terashima T; Sawamoto M
    Acc Chem Res; 2008 Sep; 41(9):1120-32. PubMed ID: 18793026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative structure-activity relationships of ruthenium catalysts for olefin metathesis.
    Occhipinti G; Bjørsvik HR; Jensen VR
    J Am Chem Soc; 2006 May; 128(21):6952-64. PubMed ID: 16719476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between one-electron transition-metal reactivity and radical polymerization processes.
    Poli R
    Angew Chem Int Ed Engl; 2006 Aug; 45(31):5058-70. PubMed ID: 16821230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational analysis of the ring-opening polymerization of rac-lactide initiated by single-site beta-diketiminate metal complexes: defining the mechanistic pathway and the origin of stereocontrol.
    Marshall EL; Gibson VC; Rzepa HS
    J Am Chem Soc; 2005 Apr; 127(16):6048-51. PubMed ID: 15839705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic production of olefin block copolymers via chain shuttling polymerization.
    Arriola DJ; Carnahan EM; Hustad PD; Kuhlman RL; Wenzel TT
    Science; 2006 May; 312(5774):714-9. PubMed ID: 16675694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex uno plures ("out of one, many"): new paradigms for expanding the range of polyolefins through reversible group transfers.
    Sita LR
    Angew Chem Int Ed Engl; 2009; 48(14):2464-72. PubMed ID: 19115334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-immobilizing catalysts and cocatalysts for olefin polymerization.
    Alt HG
    Dalton Trans; 2005 Oct; (20):3271-6. PubMed ID: 16193144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile pathways for in situ polyolefin functionalization with heteroatoms: catalytic chain transfer.
    Amin SB; Marks TJ
    Angew Chem Int Ed Engl; 2008; 47(11):2006-25. PubMed ID: 18203235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unprecedented living olefin polymerization derived from an attractive interaction between a ligand and a growing polymer chain.
    Mitani M; Nakano T; Fujita T
    Chemistry; 2003 Jun; 9(11):2396-403. PubMed ID: 12794884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers.
    Liu JQ; Wulff G
    J Am Chem Soc; 2008 Jun; 130(25):8044-54. PubMed ID: 18510322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing late-transition metal catalysts for olefin insertion polymerization and copolymerization.
    Camacho DH; Guan Z
    Chem Commun (Camb); 2010 Nov; 46(42):7879-93. PubMed ID: 20852778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining hard and soft donors in early-transition-metal olefin polymerization catalysts.
    Long RJ; Gibson VC; White AJ; Williams DJ
    Inorg Chem; 2006 Jan; 45(2):511-3. PubMed ID: 16411685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.