These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 16594689)
1. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. Cesar I; Kay A; Gonzalez Martinez JA; Grätzel M J Am Chem Soc; 2006 Apr; 128(14):4582-3. PubMed ID: 16594689 [TBL] [Abstract][Full Text] [Related]
2. Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis. Duret A; Grätzel M J Phys Chem B; 2005 Sep; 109(36):17184-91. PubMed ID: 16853192 [TBL] [Abstract][Full Text] [Related]
3. New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. Kay A; Cesar I; Grätzel M J Am Chem Soc; 2006 Dec; 128(49):15714-21. PubMed ID: 17147381 [TBL] [Abstract][Full Text] [Related]
4. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735 [TBL] [Abstract][Full Text] [Related]
5. Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. Jorand Sartoretti C; Alexander BD; Solarska R; Rutkowska IA; Augustynski J; Cerny R J Phys Chem B; 2005 Jul; 109(28):13685-92. PubMed ID: 16852715 [TBL] [Abstract][Full Text] [Related]
6. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641 [TBL] [Abstract][Full Text] [Related]
7. Water splitting with silver chloride photoanodes and amorphous silicon solar cells. Currao A; Reddy VR; van Veen MK; Schropp RE; Calzaferri G Photochem Photobiol Sci; 2004; 3(11-12):1017-25. PubMed ID: 15570389 [TBL] [Abstract][Full Text] [Related]
8. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System. Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672 [TBL] [Abstract][Full Text] [Related]
9. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation. Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756 [TBL] [Abstract][Full Text] [Related]
10. Enhanced photocatalytic activity of sprayed Au doped ferric oxide thin films for salicylic acid degradation in aqueous medium. Mahadik MA; Shinde SS; Kumbhar SS; Pathan HM; Rajpure KY; Bhosale CH J Photochem Photobiol B; 2015 Jan; 142():43-50. PubMed ID: 25496876 [TBL] [Abstract][Full Text] [Related]
11. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution. Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113 [TBL] [Abstract][Full Text] [Related]
12. An n-Si/n-Fe2O3 heterojunction tandem photoanode for solar water splitting. van de Krol R; Liang Y Chimia (Aarau); 2013; 67(3):168-71. PubMed ID: 23574957 [TBL] [Abstract][Full Text] [Related]
13. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Mahmood K; Swain BS; Jung HS Nanoscale; 2014 Aug; 6(15):9127-38. PubMed ID: 24975490 [TBL] [Abstract][Full Text] [Related]
14. Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films. Mei B; Seger B; Pedersen T; Malizia M; Hansen O; Chorkendorff I; Vesborg PC J Phys Chem Lett; 2014 Jun; 5(11):1948-52. PubMed ID: 26273878 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode. Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922 [TBL] [Abstract][Full Text] [Related]
16. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes. Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of CuFe Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650 [TBL] [Abstract][Full Text] [Related]
18. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas. Cheng Q; Xu S; Ostrikov KK Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937 [TBL] [Abstract][Full Text] [Related]
19. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Li Y; Zhang L; Torres-Pardo A; González-Calbet JM; Ma Y; Oleynikov P; Terasaki O; Asahina S; Shima M; Cha D; Zhao L; Takanabe K; Kubota J; Domen K Nat Commun; 2013; 4():2566. PubMed ID: 24089138 [TBL] [Abstract][Full Text] [Related]
20. Modelling and experimental investigations of thin films of Mg phosphorus-doped tungsten bronzes obtained by ultrasonic spray pyrolysis. Jokanović V; Nedić Z; Colović B J Microsc; 2008 Dec; 232(3):623-8. PubMed ID: 19094050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]