These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16594713)

  • 1. Reaction progress of chromophore biogenesis in green fluorescent protein.
    Zhang L; Patel HN; Lappe JW; Wachter RM
    J Am Chem Soc; 2006 Apr; 128(14):4766-72. PubMed ID: 16594713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.
    Rosenow MA; Huffman HA; Phail ME; Wachter RM
    Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromophore formation in green fluorescent protein.
    Reid BG; Flynn GC
    Biochemistry; 1997 Jun; 36(22):6786-91. PubMed ID: 9184161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation.
    Rosenow MA; Patel HN; Wachter RM
    Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    J Am Chem Soc; 2006 Apr; 128(14):4685-93. PubMed ID: 16594705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2.
    Pakhomov AA; Martynov VI
    Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    J Am Chem Soc; 2007 Mar; 129(11):3118-26. PubMed ID: 17326633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromogenic cross-link formation in green fluorescent protein.
    Wachter RM
    Acc Chem Res; 2007 Feb; 40(2):120-7. PubMed ID: 17309193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis.
    Barondeau DP; Tainer JA; Getzoff ED
    J Am Chem Soc; 2006 Mar; 128(10):3166-8. PubMed ID: 16522096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.
    Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants.
    Pouwels LJ; Zhang L; Chan NH; Dorrestein PC; Wachter RM
    Biochemistry; 2008 Sep; 47(38):10111-22. PubMed ID: 18759496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study.
    Ma Y; Sun Q; Smith SC
    Phys Chem Chem Phys; 2017 May; 19(20):12942-12952. PubMed ID: 28480935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traditional GFP-type cyclization and unexpected fragmentation site in a purple chromoprotein from Anemonia sulcata, asFP595.
    Zagranichny VE; Rudenko NV; Gorokhovatsky AY; Zakharov MV; Balashova TA; Arseniev AS
    Biochemistry; 2004 Oct; 43(42):13598-603. PubMed ID: 15491166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of cyclization in chromophore maturation of green fluorescent protein: a theoretical study.
    Ma Y; Sun Q; Zhang H; Peng L; Yu JG; Smith SC
    J Phys Chem B; 2010 Jul; 114(29):9698-705. PubMed ID: 20593847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical studies of chromophore maturation in the wild-type green fluorescent protein: ONIOM(DFT:MM) investigation of the mechanism of cyclization.
    Ma Y; Sun Q; Li Z; Yu JG; Smith SC
    J Phys Chem B; 2012 Feb; 116(4):1426-36. PubMed ID: 22212013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic study of de novo chromophore maturation of fluorescent proteins.
    Iizuka R; Yamagishi-Shirasaki M; Funatsu T
    Anal Biochem; 2011 Jul; 414(2):173-8. PubMed ID: 21459075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green fluorescent protein: structure, folding and chromophore maturation.
    Craggs TD
    Chem Soc Rev; 2009 Oct; 38(10):2865-75. PubMed ID: 19771333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Feb; 44(6):1960-70. PubMed ID: 15697221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping proton wires in proteins: carbonic anhydrase and GFP chromophore biosynthesis.
    Shinobu A; Agmon N
    J Phys Chem A; 2009 Jul; 113(26):7253-66. PubMed ID: 19388648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.