These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 16594713)
21. Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein. Sniegowski JA; Phail ME; Wachter RM Biochem Biophys Res Commun; 2005 Jul; 332(3):657-63. PubMed ID: 15894286 [TBL] [Abstract][Full Text] [Related]
22. The equilibrium unfolding intermediate observed at pH 4 and its relationship with the kinetic folding intermediates in green fluorescent protein. Enoki S; Maki K; Inobe T; Takahashi K; Kamagata K; Oroguchi T; Nakatani H; Tomoyori K; Kuwajima K J Mol Biol; 2006 Sep; 361(5):969-82. PubMed ID: 16889795 [TBL] [Abstract][Full Text] [Related]
23. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation. Patnaik SS; Trohalaki S; Pachter R Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152 [TBL] [Abstract][Full Text] [Related]
24. Denaturation studies reveal significant differences between GFP and blue fluorescent protein. Saeed IA; Ashraf SS Int J Biol Macromol; 2009 Oct; 45(3):236-41. PubMed ID: 19501614 [TBL] [Abstract][Full Text] [Related]
25. The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. Wilmann PG; Turcic K; Battad JM; Wilce MC; Devenish RJ; Prescott M; Rossjohn J J Mol Biol; 2006 Nov; 364(2):213-24. PubMed ID: 17010376 [TBL] [Abstract][Full Text] [Related]
26. Acid denaturation and refolding of green fluorescent protein. Enoki S; Saeki K; Maki K; Kuwajima K Biochemistry; 2004 Nov; 43(44):14238-48. PubMed ID: 15518574 [TBL] [Abstract][Full Text] [Related]
27. Understanding the folding of GFP using biophysical techniques. Jackson SE; Craggs TD; Huang JR Expert Rev Proteomics; 2006 Oct; 3(5):545-59. PubMed ID: 17078767 [TBL] [Abstract][Full Text] [Related]
28. The 2.1A crystal structure of copGFP, a representative member of the copepod clade within the green fluorescent protein superfamily. Wilmann PG; Battad J; Petersen J; Wilce MC; Dove S; Devenish RJ; Prescott M; Rossjohn J J Mol Biol; 2006 Jun; 359(4):890-900. PubMed ID: 16697009 [TBL] [Abstract][Full Text] [Related]
29. Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. Sniegowski JA; Lappe JW; Patel HN; Huffman HA; Wachter RM J Biol Chem; 2005 Jul; 280(28):26248-55. PubMed ID: 15888441 [TBL] [Abstract][Full Text] [Related]
30. Pyrroloquinoline quinone biogenesis: characterization of PqqC and its H84N and H84A active site variants. Magnusson OT; RoseFigura JM; Toyama H; Schwarzenbacher R; Klinman JP Biochemistry; 2007 Jun; 46(24):7174-86. PubMed ID: 17523676 [TBL] [Abstract][Full Text] [Related]
31. Engineering a circularly permuted GFP scaffold for peptide presentation. Paschke M; Tiede C; Höhne W J Mol Recognit; 2007; 20(5):367-78. PubMed ID: 17918771 [TBL] [Abstract][Full Text] [Related]
32. Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Kremers GJ; Goedhart J; van den Heuvel DJ; Gerritsen HC; Gadella TW Biochemistry; 2007 Mar; 46(12):3775-83. PubMed ID: 17323929 [TBL] [Abstract][Full Text] [Related]
33. A synthetic GFP-like chromophore undergoes base-catalyzed autoxidation into acylimine red form. Ivashkin PE; Lukyanov KA; Lukyanov S; Yampolsky IV J Org Chem; 2011 Apr; 76(8):2782-91. PubMed ID: 21391723 [TBL] [Abstract][Full Text] [Related]
34. Non-fluorescent mutant of green fluorescent protein sheds light on the mechanism of chromophore formation. Bartkiewicz M; Kazazić S; Krasowska J; Clark PL; Wielgus-Kutrowska B; Bzowska A FEBS Lett; 2018 May; 592(9):1516-1523. PubMed ID: 29637558 [TBL] [Abstract][Full Text] [Related]
35. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. Magliery TJ; Wilson CG; Pan W; Mishler D; Ghosh I; Hamilton AD; Regan L J Am Chem Soc; 2005 Jan; 127(1):146-57. PubMed ID: 15631464 [TBL] [Abstract][Full Text] [Related]
36. Structure and reactivity of the chromophore of a GFP-like chromoprotein from Condylactis gigantea. Pakhomov AA; Pletneva NV; Balashova TA; Martynov VI Biochemistry; 2006 Jun; 45(23):7256-64. PubMed ID: 16752914 [TBL] [Abstract][Full Text] [Related]
37. Photoreactions and dynamics of the green fluorescent protein. van Thor JJ Chem Soc Rev; 2009 Oct; 38(10):2935-50. PubMed ID: 19771337 [TBL] [Abstract][Full Text] [Related]
38. Stable intermediate states and high energy barriers in the unfolding of GFP. Huang JR; Craggs TD; Christodoulou J; Jackson SE J Mol Biol; 2007 Jul; 370(2):356-71. PubMed ID: 17512539 [TBL] [Abstract][Full Text] [Related]
39. zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. Remington SJ; Wachter RM; Yarbrough DK; Branchaud B; Anderson DC; Kallio K; Lukyanov KA Biochemistry; 2005 Jan; 44(1):202-12. PubMed ID: 15628861 [TBL] [Abstract][Full Text] [Related]
40. Kinetics of acid-induced spectral changes in the GFPmut2 chromophore. Abbruzzetti S; Grandi E; Viappiani C; Bologna S; Campanini B; Raboni S; Bettati S; Mozzarelli A J Am Chem Soc; 2005 Jan; 127(2):626-35. PubMed ID: 15643887 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]