These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
967 related articles for article (PubMed ID: 16595546)
1. Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. Rajnicek AM; Foubister LE; McCaig CD J Cell Sci; 2006 May; 119(Pt 9):1723-35. PubMed ID: 16595546 [TBL] [Abstract][Full Text] [Related]
2. Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry. Rajnicek AM; Foubister LE; McCaig CD J Cell Sci; 2006 May; 119(Pt 9):1736-45. PubMed ID: 16595545 [TBL] [Abstract][Full Text] [Related]
3. Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Rajnicek AM; Foubister LE; McCaig CD Dev Biol; 2007 Dec; 312(1):448-60. PubMed ID: 17976566 [TBL] [Abstract][Full Text] [Related]
4. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Yuan XB; Jin M; Xu X; Song YQ; Wu CP; Poo MM; Duan S Nat Cell Biol; 2003 Jan; 5(1):38-45. PubMed ID: 12510192 [TBL] [Abstract][Full Text] [Related]
5. Alignment of corneal and lens epithelial cells by co-operative effects of substratum topography and DC electric fields. Rajnicek AM; Foubister LE; McCaig CD Biomaterials; 2008 May; 29(13):2082-95. PubMed ID: 18281089 [TBL] [Abstract][Full Text] [Related]
6. Rho GTPases and the control of cell behaviour. Hall A Biochem Soc Trans; 2005 Nov; 33(Pt 5):891-5. PubMed ID: 16246005 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases. Dunford JE; Rogers MJ; Ebetino FH; Phipps RJ; Coxon FP J Bone Miner Res; 2006 May; 21(5):684-94. PubMed ID: 16734383 [TBL] [Abstract][Full Text] [Related]
9. Independent roles of Rho-GTPases in growth cone and axonal behavior. Thies E; Davenport RW J Neurobiol; 2003 Feb; 54(2):358-69. PubMed ID: 12500311 [TBL] [Abstract][Full Text] [Related]
10. Growth factor induced activation of Rho and Rac GTPases and actin cytoskeletal reorganization in human lens epithelial cells. Maddala R; Reddy VN; Epstein DL; Rao V Mol Vis; 2003 Jul; 9():329-36. PubMed ID: 12876554 [TBL] [Abstract][Full Text] [Related]
11. FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain. Nakamura T; Aoki K; Matsuda M Brain Res Mol Brain Res; 2005 Oct; 139(2):277-87. PubMed ID: 16024133 [TBL] [Abstract][Full Text] [Related]
12. Role of Rho, Rac, and Rho-kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells. Gutjahr MC; Rossy J; Niggli V Exp Cell Res; 2005 Aug; 308(2):422-38. PubMed ID: 15950966 [TBL] [Abstract][Full Text] [Related]
13. Vav regulates activation of Rac but not Cdc42 during FcgammaR-mediated phagocytosis. Patel JC; Hall A; Caron E Mol Biol Cell; 2002 Apr; 13(4):1215-26. PubMed ID: 11950933 [TBL] [Abstract][Full Text] [Related]
14. An essential role for Rac/Cdc42 GTPases in cerebellar granule neuron survival. Linseman DA; Laessig T; Meintzer MK; McClure M; Barth H; Aktories K; Heidenreich KA J Biol Chem; 2001 Oct; 276(42):39123-31. PubMed ID: 11509562 [TBL] [Abstract][Full Text] [Related]
15. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Yarbrough ML; Li Y; Kinch LN; Grishin NV; Ball HL; Orth K Science; 2009 Jan; 323(5911):269-72. PubMed ID: 19039103 [TBL] [Abstract][Full Text] [Related]
16. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases. Kuhn TB; Meberg PJ; Brown MD; Bernstein BW; Minamide LS; Jensen JR; Okada K; Soda EA; Bamburg JR J Neurobiol; 2000 Aug; 44(2):126-44. PubMed ID: 10934317 [TBL] [Abstract][Full Text] [Related]
17. Role of small GTP binding proteins in the growth-promoting and antiapoptotic actions of gastrin. Stepan V; Ramamoorthy S; Pausawasdi N; Logsdon CD; Askari FK; Todisco A Am J Physiol Gastrointest Liver Physiol; 2004 Sep; 287(3):G715-25. PubMed ID: 15331357 [TBL] [Abstract][Full Text] [Related]
18. Small applied electric fields guide migration of hippocampal neurons. Yao L; Shanley L; McCaig C; Zhao M J Cell Physiol; 2008 Aug; 216(2):527-35. PubMed ID: 18393356 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of Rho GTPases in Invertebrate Growth Cones Induces a Switch in Responsiveness to Retinoic Acid. Johnson A; Nasser TIN; Spencer GE Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31500289 [TBL] [Abstract][Full Text] [Related]
20. Effects of pharmacological inhibition of small GTPases on axon extension and migration of enteric neural crest-derived cells. Stewart AL; Young HM; Popoff M; Anderson RB Dev Biol; 2007 Jul; 307(1):92-104. PubMed ID: 17524389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]