These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16595798)

  • 21. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.
    Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE
    EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trans-translation: the tmRNA-mediated surveillance mechanism for ribosome rescue, directed protein degradation, and nonstop mRNA decay.
    Dulebohn D; Choy J; Sundermeier T; Okan N; Karzai AW
    Biochemistry; 2007 Apr; 46(16):4681-93. PubMed ID: 17397189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A minimum structure of aminoglycosides that causes an initiation shift of trans-translation.
    Konno T; Takahashi T; Kurita D; Muto A; Himeno H
    Nucleic Acids Res; 2004; 32(14):4119-26. PubMed ID: 15295039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element.
    Staple DW; Butcher SE
    J Mol Biol; 2005 Jun; 349(5):1011-23. PubMed ID: 15927637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses.
    Wang G; Yang Y; Huang X; Du Z
    J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional analysis of factors involved in trans-translation.
    Takada K; Takemoto C; Kawazoe M; Konno T; Matsuta N; Kurita D; Asano K; Shirouzu M; Yokoyama S; Muto A; Himeno H
    Nucleic Acids Symp Ser (Oxf); 2005; (49):101-2. PubMed ID: 17150653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting.
    Giedroc DP; Theimer CA; Nixon PL
    J Mol Biol; 2000 Apr; 298(2):167-85. PubMed ID: 10764589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The structure and function of tRNA-like domain in E. coli tmRNA.
    Hanawa K; Lee S; Himeno H; Muto A
    Nucleic Acids Symp Ser; 2000; (44):263-4. PubMed ID: 12903369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro trans-translation of Thermus thermophilus: ribosomal protein S1 is not required for the early stage of trans-translation.
    Takada K; Takemoto C; Kawazoe M; Konno T; Hanawa-Suetsugu K; Lee S; Shirouzu M; Yokoyama S; Muto A; Himeno H
    RNA; 2007 Apr; 13(4):503-10. PubMed ID: 17299130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Lost in translation].
    Gillet R; Felden B
    Med Sci (Paris); 2007; 23(6-7):633-9. PubMed ID: 17631839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Base-pairings within the RNA pseudoknot associated with the simian retrovirus-1 gag-pro frameshift site.
    Du Z; Holland JA; Hansen MR; Giedroc DP; Hoffman DW
    J Mol Biol; 1997 Jul; 270(3):464-70. PubMed ID: 9237911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SsrA genes of streptomycetes and association of proteins to the tmRNA during development and cellular differentiation.
    Mikulík K; Palecková P; Felsberg J; Bobek J; Zídková J; Halada P
    Proteomics; 2008 Apr; 8(7):1429-41. PubMed ID: 18306177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses.
    Huang X; Cheng Q; Du Z
    Biomed Res Int; 2013; 2013():984028. PubMed ID: 24298557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermus thermophilus tmRNA and trans-translation.
    Takada K; Takemoto C; Kawazoe M; Shirouzu M; Yokoyama S; Muto A; Himeno H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):369-70. PubMed ID: 18029740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting.
    Michiels PJ; Versleijen AA; Verlaan PW; Pleij CW; Hilbers CW; Heus HA
    J Mol Biol; 2001 Jul; 310(5):1109-23. PubMed ID: 11501999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A competition mechanism regulates the translation of the Escherichia coli operon encoding ribosomal proteins L35 and L20.
    Haentjens-Sitri J; Allemand F; Springer M; Chiaruttini C
    J Mol Biol; 2008 Jan; 375(3):612-25. PubMed ID: 18037435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dynamical model of programmed -1 ribosomal frameshifting.
    Xie P
    J Theor Biol; 2013 Nov; 336():119-31. PubMed ID: 23911574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The structure and function of tmRNA].
    Tian Y; Lu XY; Yi K; Tang YJ; Chen HM
    Yi Chuan; 2004 May; 26(3):409-13. PubMed ID: 15640030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanism of trans-translation.
    Kurita D; Konno T; Takada K; Muto A; Himeno H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):43-4. PubMed ID: 18029577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA).
    Felden B; Himeno H; Muto A; McCutcheon JP; Atkins JF; Gesteland RF
    RNA; 1997 Jan; 3(1):89-103. PubMed ID: 8990402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.