These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 16596019)
1. Usefulness of the final filter of the IV infusion set in intravenous administration of drugs--contamination of injection preparations by insoluble microparticles and its causes. Kuramoto K; Shoji T; Nakagawa Y Yakugaku Zasshi; 2006 Apr; 126(4):289-95. PubMed ID: 16596019 [TBL] [Abstract][Full Text] [Related]
2. Filtration of Glass Delamination Particles with West Pharmaceutical Vial Adapters. Zarour-Shalev EH; Ovadia Y; Tuchmay O; Reynolds G; Lev N PDA J Pharm Sci Technol; 2015; 69(6):669-76. PubMed ID: 26659100 [TBL] [Abstract][Full Text] [Related]
3. Particulate and microbial contamination in in-use admixed intravenous infusions. Yorioka K; Oie S; Oomaki M; Imamura A; Kamiya A Biol Pharm Bull; 2006 Nov; 29(11):2321-3. PubMed ID: 17077539 [TBL] [Abstract][Full Text] [Related]
4. Filtration of crushed tablet suspensions has potential to reduce infection incidence in people who inject drugs. Ng H; Patel RP; Bruno R; Latham R; Wanandy T; McLean S Drug Alcohol Rev; 2015 Jan; 34(1):67-73. PubMed ID: 25196921 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of in-Line Filters to Completely Remove Particulate Contamination During a Pediatric Multidrug Infusion Protocol. Perez M; Décaudin B; Abou Chahla W; Nelken B; Storme L; Masse M; Barthélémy C; Lebuffe G; Odou P Sci Rep; 2018 May; 8(1):7714. PubMed ID: 29769547 [TBL] [Abstract][Full Text] [Related]
6. Effects of filtration on the presence of particulate and oxycodone content of injections prepared from crushed OxyContin® tablets. Patel P; Patel RP; Brandon S; McLean S; Bruno R; de Graaff B Curr Drug Saf; 2012 Jul; 7(3):218-24. PubMed ID: 22950988 [TBL] [Abstract][Full Text] [Related]
7. [Intravenous (i.v.) fluid administration systems and incompatibility of injection]. Kobo B Yakugaku Zasshi; 1990 Jan; 110(1):1-15. PubMed ID: 2192024 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of subvisible particles in human immunoglobulin and lipid nanoparticles repackaged from a multi-dose vial using plastic syringes. Hada S; Na KJ; Jeong J; Choi DH; Kim NA; Jeong SH Int J Biol Macromol; 2023 Mar; 232():123439. PubMed ID: 36716845 [TBL] [Abstract][Full Text] [Related]
9. Multiple withdrawals from single-use vials: a study on sterility. Ripoll Gallardo A; Meneghetti G; Ragazzoni L; Kroumova V; Ferrante D; Ingrassia PL; Ruzza P; Dell'Era A; Boniolo E; Koraqe G; Faggiano F; Della Corte F Int J Pharm; 2015 May; 485(1-2):160-3. PubMed ID: 25769293 [TBL] [Abstract][Full Text] [Related]
10. Preparation of porous yttrium oxide microparticles by gelation of ammonium alginate in aqueous solution containing yttrium ions. Kawashita M; Matsui N; Li Z; Miyazaki T J Mater Sci Mater Med; 2010 Jun; 21(6):1837-43. PubMed ID: 20232233 [TBL] [Abstract][Full Text] [Related]
11. Examination of Particulate Contamination in Parenteral Injections and Infusions Following Fluid Withdrawal Utilizing Conventional Needles and Filter Needles: Assessment of Compliance and Comparative Analysis. van den Berg RB; Ganesh M; Crul M; Wilms EB; Swart EL; Westerman EM J Pharm Sci; 2024 Sep; 113(9):2668-2674. PubMed ID: 38852673 [TBL] [Abstract][Full Text] [Related]
12. Visual compatibility of i.v. medications routinely used in bone marrow transplant recipients. Canann D; Tyler LS; Barker B; Condie C Am J Health Syst Pharm; 2009 Apr; 66(8):727-9. PubMed ID: 19336832 [TBL] [Abstract][Full Text] [Related]
13. Microparticles and Nanoparticles Delivered in Intravenous Saline and in an Intravenous Solution of a Therapeutic Antibody Product. Pardeshi NN; Qi W; Dahl K; Caplan L; Carpenter JF J Pharm Sci; 2017 Feb; 106(2):511-520. PubMed ID: 27832839 [TBL] [Abstract][Full Text] [Related]
14. A novel design for stable self-assembly cubosome precursor-microparticles enhancing dissolution of insoluble drugs. Mei L; Xie Y; Jing H; Huang Y; Chen J; Ran H; Pan X; Wu C Drug Dev Ind Pharm; 2017 Aug; 43(8):1239-1243. PubMed ID: 28276277 [TBL] [Abstract][Full Text] [Related]
15. Microbial contamination potential of solutions in prefilled disposable syringes used with a syringe pump. Mitrano FP; Baptista RJ; Newton DW; Augustine SC Am J Hosp Pharm; 1986 Jan; 43(1):78-80. PubMed ID: 3953587 [TBL] [Abstract][Full Text] [Related]
16. Investigating the impact of clinical anaesthetic practice on bacterial contamination of intravenous fluids and drugs. Mahida N; Levi K; Kearns A; Snape S; Moppett I J Hosp Infect; 2015 May; 90(1):70-4. PubMed ID: 25648939 [TBL] [Abstract][Full Text] [Related]
17. Particulate contamination of lyophilized amphotericin B preparation during reconstitution process. Sendo T; Hirakawa M; Makino K; Nakashima K; Kataoka Y; Oishi R J Clin Pharm Ther; 2001 Apr; 26(2):87-91. PubMed ID: 11350530 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the in-line filters for the intravenous infusion of amphotericin B fluid. Hirakawa M; Makino K; Nakashima K; Kataoka Y; Oishi R J Clin Pharm Ther; 1999 Oct; 24(5):387-92. PubMed ID: 10583703 [TBL] [Abstract][Full Text] [Related]
19. Comparative study between a gravity-based and peristaltic pump for intravenous infusion with respect to the generation of proteinaceous microparticles. Hada S; Ji S; Lee YN; Kim KH; Maharjan R; Kim NA; Rantanen J; Jeong SH Int J Pharm; 2023 Jul; 642():123091. PubMed ID: 37268032 [TBL] [Abstract][Full Text] [Related]