BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 16596343)

  • 1. Chemical shift backbone assignments of TAP-N, the 31 kDa cargo-binding region of the protein TAP.
    Pimienta G; Gabel F; Zanier K; Conti E; Sattler M
    J Biomol NMR; 2006; 36 Suppl 1():23. PubMed ID: 16596343
    [No Abstract]   [Full Text] [Related]  

  • 2. Modulation of the antigenic peptide transporter TAP by recombinant antibodies binding to the last five residues of TAP1.
    Plewnia G; Schulze K; Hunte C; Tampé R; Koch J
    J Mol Biol; 2007 May; 369(1):95-107. PubMed ID: 17418234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a contact region for peptide on the TAP1 chain of the transporter associated with antigen processing.
    Nijenhuis M; Schmitt S; Armandola EA; Obst R; Brunner J; Hämmerling GJ
    J Immunol; 1996 Mar; 156(6):2186-95. PubMed ID: 8690908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant SEC14-like proteins (TAP) possess GTPase activity.
    Habermehl D; Kempna P; Azzi A; Zingg JM
    Biochem Biophys Res Commun; 2005 Jan; 326(1):254-9. PubMed ID: 15567179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct functions and cooperative interaction of the subunits of the transporter associated with antigen processing (TAP).
    Karttunen JT; Lehner PJ; Gupta SS; Hewitt EW; Cresswell P
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7431-6. PubMed ID: 11381133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane topology and dimerization of the two subunits of the transporter associated with antigen processing reveal a three-domain structure.
    Vos JC; Spee P; Momburg F; Neefjes J
    J Immunol; 1999 Dec; 163(12):6679-85. PubMed ID: 10586064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Backbone chemical shifts assignments of D-allose binding protein in the free form and in complex with D-allose.
    Castaño D; Millet O
    Biomol NMR Assign; 2011 Apr; 5(1):31-4. PubMed ID: 20711759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of chimeric proteins to investigate the role of transporter associated with antigen processing (TAP) structural domains in peptide binding and translocation.
    Arora S; Lapinski PE; Raghavan M
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7241-6. PubMed ID: 11416206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple regions of the transporter associated with antigen processing (TAP) contribute to its peptide binding site.
    Nijenhuis M; Hämmerling GJ
    J Immunol; 1996 Dec; 157(12):5467-77. PubMed ID: 8955196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of TAP family dimerizations by an in vivo assay in mammalian cells.
    Leveson-Gower DB; Michnick SW; Ling V
    Biochemistry; 2004 Nov; 43(44):14257-64. PubMed ID: 15518576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rational design of TAP inhibitors using peptide substrate modifications and peptidomimetics.
    Grommé M; van der Valk R; Sliedregt K; Vernie L; Liskamp R; Hämmerling G; Koopmann JO; Momburg F; Neefjes J
    Eur J Immunol; 1997 Apr; 27(4):898-904. PubMed ID: 9130642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoplasmic domains of the transporter associated with antigen processing and P-glycoprotein interact with subunits of the proteasome.
    Begley GS; Horvath AR; Taylor JC; Higgins CF
    Mol Immunol; 2005 Jan; 42(1):137-41. PubMed ID: 15488952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues in TAP2 peptide transporters controlling substrate specificity.
    Momburg F; Armandola EA; Post M; Hammerling GJ
    J Immunol; 1996 Mar; 156(5):1756-63. PubMed ID: 8596024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tap-1 and Tap-2 gene therapy selectively restores conformationally dependent HLA Class I expression in type I diabetic cells.
    Wang F; Li X; Annis B; Faustman DL
    Hum Gene Ther; 1995 Aug; 6(8):1005-17. PubMed ID: 7578413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disparate peptide-dependent thymic selection outcomes in beta2M-deficient mice versus TAP-1-deficient mice: implications for repertoire formation.
    Sasada T; Yang Y; Lai CC; Touma M; Clayton LK; Liu JH; Parisini E; Wang JH; Reinherz EL
    Eur J Immunol; 2003 Feb; 33(2):368-80. PubMed ID: 12645934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the human GINS complex.
    Choi JM; Lim HS; Kim JJ; Song OK; Cho Y
    Genes Dev; 2007 Jun; 21(11):1316-21. PubMed ID: 17545466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAP and TAP-like--brothers in arms?
    Zhao C; Tampé R; Abele R
    Naunyn Schmiedebergs Arch Pharmacol; 2006 Mar; 372(6):444-50. PubMed ID: 16525794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression.
    Rowe M; Khanna R; Jacob CA; Argaet V; Kelly A; Powis S; Belich M; Croom-Carter D; Lee S; Burrows SR
    Eur J Immunol; 1995 May; 25(5):1374-84. PubMed ID: 7774641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A major role for tapasin as a stabilizer of the TAP peptide transporter and consequences for MHC class I expression.
    Garbi N; Tiwari N; Momburg F; Hämmerling GJ
    Eur J Immunol; 2003 Jan; 33(1):264-73. PubMed ID: 12594855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymorphism in the mouse Tap-1 gene. Association with abnormal CD8+ T cell development in the nonobese nondiabetic mouse.
    Pearce RB; Trigler L; Svaasand EK; Peterson CM
    J Immunol; 1993 Nov; 151(10):5338-47. PubMed ID: 8228229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.