BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 16596586)

  • 1. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel.
    Dong Y; Feng SS
    J Biomed Mater Res A; 2006 Jul; 78(1):12-9. PubMed ID: 16596586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release.
    Zhang Z; Feng SS
    Biomaterials; 2006 Jan; 27(2):262-70. PubMed ID: 16024075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs.
    Dong Y; Feng SS
    Biomaterials; 2004 Jun; 25(14):2843-9. PubMed ID: 14962562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
    Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K
    Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles.
    Zhang Z; Feng SS
    Biomaterials; 2006 Jul; 27(21):4025-33. PubMed ID: 16564085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microporous structure and drug release kinetics of polymeric nanoparticles.
    Sant S; Thommes M; Hildgen P
    Langmuir; 2008 Jan; 24(1):280-7. PubMed ID: 18052222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy.
    Dong Y; Feng SS
    Biomaterials; 2007 Oct; 28(28):4154-60. PubMed ID: 17576004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy.
    Jiang C; Wang H; Zhang X; Sun Z; Wang F; Cheng J; Xie H; Yu B; Zhou L
    Int J Pharm; 2014 Nov; 475(1-2):60-8. PubMed ID: 25152167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy.
    Zhang Z; Feng SS
    Biomacromolecules; 2006 Apr; 7(4):1139-46. PubMed ID: 16602731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folate-conjugated amphiphilic star-shaped block copolymers as targeted nanocarriers.
    Zhu J; Zhou Z; Yang C; Kong D; Wan Y; Wang Z
    J Biomed Mater Res A; 2011 Jun; 97(4):498-508. PubMed ID: 21509931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionically fixed polymeric nanoparticles as a novel drug carrier.
    Lee SW; Chang DH; Shim MS; Kim BO; Kim SO; Seo MH
    Pharm Res; 2007 Aug; 24(8):1508-16. PubMed ID: 17380262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature.
    Yu DH; Lu Q; Xie J; Fang C; Chen HZ
    Biomaterials; 2010 Mar; 31(8):2278-92. PubMed ID: 20053444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ester anhydride)/mPEG amphiphilic block co-polymer nanoparticles as delivery devices for paclitaxel.
    Liang Y; Xiao L; Li Y; Zhai Y; Xie C; Deng L; Dong A
    J Biomater Sci Polym Ed; 2011; 22(4-6):701-15. PubMed ID: 20566053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles.
    Pan J; Feng SS
    Biomaterials; 2008 Jun; 29(17):2663-72. PubMed ID: 18396333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate.
    Zhang X; Li Y; Chen X; Wang X; Xu X; Liang Q; Hu J; Jing X
    Biomaterials; 2005 May; 26(14):2121-8. PubMed ID: 15576187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly(d,l-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2010 Mar; 388(1-2):263-73. PubMed ID: 20060450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable polymersomes as carriers and release systems for paclitaxel using Oregon GreenĀ® 488 labeled paclitaxel as a model compound.
    Lee JS; Feijen J
    J Control Release; 2012 Mar; 158(2):312-8. PubMed ID: 22063005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment.
    Wang J; Feng SS; Wang S; Chen ZY
    Int J Pharm; 2010 Nov; 400(1-2):194-200. PubMed ID: 20801205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.