These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16596951)

  • 1. Density-dependent insect-mold interactions: effects on fungal growth and spore production.
    Rohlfs M
    Mycologia; 2005; 97(5):996-1001. PubMed ID: 16596951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae.
    Trienens M; Rohlfs M
    BMC Evol Biol; 2011 Jul; 11():206. PubMed ID: 21756302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host-parasitoid interaction as affected by interkingdom competition.
    Rohlfs M
    Oecologia; 2008 Feb; 155(1):161-8. PubMed ID: 17989998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors.
    Rohlfs M
    Front Zool; 2005 Jan; 2(1):2. PubMed ID: 15679898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of hyphal growth and sporulation of the insect pathogenic fungus Entomophthora thripidum in vitro.
    Freimoser FM; Grundschober A; Tuor U; Aebi M
    FEMS Microbiol Lett; 2003 May; 222(2):281-7. PubMed ID: 12770719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spore adhesion of entomopathogenic fungi to larvae of Frankliniella occidentalis (Pergande, 1895)-(Thysanoptera: Thripidae).
    Meyer U; Sermann H; Buettner C
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(3):601-7. PubMed ID: 12696427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Three Volatile Oxylipins on Colony Development in Two Species of Fungi and on Drosophila Larval Metamorphosis.
    Yin G; Padhi S; Lee S; Hung R; Zhao G; Bennett JW
    Curr Microbiol; 2015 Sep; 71(3):347-56. PubMed ID: 26126831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial aggregation across ephemeral resource patches in insect communities: an adaptive response to natural enemies?
    Rohlfs M; Hoffmeister TS
    Oecologia; 2004 Aug; 140(4):654-61. PubMed ID: 15232730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the Drosophila-Aspergillus model system.
    Caballero Ortiz S; Trienens M; Rohlfs M
    PLoS One; 2013; 8(8):e74951. PubMed ID: 24023705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of initial spore adhesion in pellet and biofilm formation in Aspergillus niger.
    Priegnitz BE; Wargenau A; Brandt U; Rohde M; Dietrich S; Kwade A; Krull R; Fleissner A
    Fungal Genet Biol; 2012 Jan; 49(1):30-8. PubMed ID: 22178638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies on the aggregation of Aspergillus niger conidia.
    Grimm LH; Kelly S; Hengstler J; Göbel A; Krull R; Hempel DC
    Biotechnol Bioeng; 2004 Jul; 87(2):213-8. PubMed ID: 15236250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro efficacy of 75 essential oils against Aspergillus niger.
    Pawar VC; Thaker VS
    Mycoses; 2006 Jul; 49(4):316-23. PubMed ID: 16784447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspergillus niger α-1,3-glucan acts as a virulence factor by inhibiting the insect phenoloxidase system.
    Stączek S; Zdybicka-Barabas A; Pleszczyńska M; Wiater A; Cytryńska M
    J Invertebr Pathol; 2020 Mar; 171():107341. PubMed ID: 32057750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated Exposure of Aspergillus niger Spores to the Antifungal Bacterium Collimonas fungivorans Ter331 Selects for Delayed Spore Germination.
    Mosquera S; Leveau JHJ; Stergiopoulos I
    Appl Environ Microbiol; 2021 May; 87(12):e0023321. PubMed ID: 33811027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger.
    Priegnitz BE; Brandt U; Pahirulzaman KA; Dickschat JS; Fleißner A
    Eukaryot Cell; 2015 Jun; 14(6):602-15. PubMed ID: 25888553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-specific responses of dew fly larvae to mycotoxins.
    Rohlfs M; Obmann B
    Mycotoxin Res; 2009 Jun; 25(2):103-12. PubMed ID: 23604986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evolution of resistance against a competing fungus in Drosophila melanogaster.
    Wölfle S; Trienens M; Rohlfs M
    Oecologia; 2009 Oct; 161(4):781-90. PubMed ID: 19597847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.
    Dai Z; Aryal UK; Shukla A; Qian WJ; Smith RD; Magnuson JK; Adney WS; Beckham GT; Brunecky R; Himmel ME; Decker SR; Ju X; Zhang X; Baker SE
    Fungal Genet Biol; 2013 Dec; 61():120-32. PubMed ID: 24076077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Nature and frequency of the existence of mold fungi in garbage cans for biological waste and the resultant airborne spore pollution].
    Weinrich M; Vissiennon T; Kliche R; Schumann M; Bergmann A
    Berl Munch Tierarztl Wochenschr; 1999 Dec; 112(12):454-8. PubMed ID: 10638030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of farnesol on the morphogenesis of Aspergillus niger.
    Lorek J; Pöggeler S; Weide MR; Breves R; Bockmühl DP
    J Basic Microbiol; 2008 Apr; 48(2):99-103. PubMed ID: 18383232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.