These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16596959)

  • 1. Development of an isolate-specific marker for tracking Phaeomoniella chlamydospora infection in grapevines.
    Ridgway HJ; Steyaert JM; Pottinger BM; Carpenter M; Nicol D; Stewart A
    Mycologia; 2005; 97(5):1093-101. PubMed ID: 16596959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method to detect and quantify Phaeomoniella chlamydospora and Phaeoacremonium aleophilum DNA in grapevine-wood samples.
    Pouzoulet J; Mailhac N; Couderc C; Besson X; Daydé J; Lummerzheim M; Jacques A
    Appl Microbiol Biotechnol; 2013 Dec; 97(23):10163-75. PubMed ID: 24136470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time PCR detection of Phaeomoniella chlamydospora and Phaeoacremonium aleophilum.
    Martín MT; Cobos R; Martín L; López-Enríquez L
    Appl Environ Microbiol; 2012 Jun; 78(11):3985-91. PubMed ID: 22447605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular identification and detection of Eutypa lata in grapevine.
    Lardner R; Stummer BE; Sosnowskip MR; Scott ES
    Mycol Res; 2005 Jul; 109(Pt 7):799-808. PubMed ID: 16121566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phaeoacremonium italicum sp. nov., associated with esca of grapevine in southern Italy.
    Raimondo ML; Lops F; Carlucci A
    Mycologia; 2014; 106(6):1119-26. PubMed ID: 25151999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCR-based strategy to detect and identify species of Phaeoacremonium causing grapevine diseases.
    Aroca A; Raposo R
    Appl Environ Microbiol; 2007 May; 73(9):2911-8. PubMed ID: 17463292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colonization of Vitis spp. wood by sGFP-transformed Phaeomoniella chlamydospora, a tracheomycotic fungus involved in Esca disease.
    Landi L; Murolo S; Romanazzi G
    Phytopathology; 2012 Mar; 102(3):290-7. PubMed ID: 22316358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadophora species associated with wood-decay of grapevine in North America.
    Travadon R; Lawrence DP; Rooney-Latham S; Gubler WD; Wilcox WF; Rolshausen PE; Baumgartner K
    Fungal Biol; 2015 Jan; 119(1):53-66. PubMed ID: 25601149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases.
    Haidar R; Roudet J; Bonnard O; Dufour MC; Corio-Costet MF; Fert M; Gautier T; Deschamps A; Fermaud M
    Microbiol Res; 2016 Nov; 192():172-184. PubMed ID: 27664735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential Inoculum Sources of
    Retief E; McLeod A; Fourie PH
    Eur J Plant Pathol; 2006; 115(3):331-339. PubMed ID: 32214676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and phenotypic description of the widespread root symbiont Acephala applanata gen. et sp. nov., formerly known as dark-septate endophyte type 1.
    Grünig CR; Sieber TN
    Mycologia; 2005; 97(3):628-40. PubMed ID: 16392252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomarker for the identification of four Phaeoacremonium species using the beta-tubulin gene as the target sequence.
    Aroca A; Raposo R; Lunello P
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):1131-40. PubMed ID: 18719899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Phaeoacremonium species associated with Petri disease and esca of grapevine in Iran and Spain.
    Gramaje D; Armengol J; Mohammadi H; Banihashemi Z; Mostert L
    Mycologia; 2009; 101(6):920-9. PubMed ID: 19927758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation between Aspergillus flavus and Aspergillus parasiticus from pure culture and aflatoxin-contaminated grapes using PCR-RFLP analysis of aflR-aflJ intergenic spacer.
    El Khoury A; Atoui A; Rizk T; Lteif R; Kallassy M; Lebrihi A
    J Food Sci; 2011 May; 76(4):M247-53. PubMed ID: 22417364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid nested PCR-based detection of Ramularia collo-cygni direct from barley.
    Havis ND; Oxley SP; Piper SR; Langrell SR
    FEMS Microbiol Lett; 2006 Mar; 256(2):217-23. PubMed ID: 16499609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Biocontrol Root-Oomycete,
    Yacoub A; Magnin N; Gerbore J; Haidar R; Bruez E; Compant S; Guyoneaud R; Rey P
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32961710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmid distribution in European Diaporthe helianthi isolates.
    Vergara M; Capasso T; Gobbi E; Vannacci G
    Mycopathologia; 2005 Jun; 159(4):591-9. PubMed ID: 15983747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and pathogenic diversity of Neofusicoccum parvum in New Zealand vineyards.
    Baskarathevan J; Jaspers MV; Jones EE; Cruickshank RH; Ridgway HJ
    Fungal Biol; 2012 Feb; 116(2):276-88. PubMed ID: 22289773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling grapevine trunk pathogens in planta: a case for community-targeted DNA metabarcoding.
    Morales-Cruz A; Figueroa-Balderas R; García JF; Tran E; Rolshausen PE; Baumgartner K; Cantu D
    BMC Microbiol; 2018 Dec; 18(1):214. PubMed ID: 30547761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCR amplification and characterization of the intergenic spacer region of the ribosomal DNA in Pyrenophora graminea.
    Pecchia S; Mercatelli E; Vannacci G
    FEMS Microbiol Lett; 1998 Sep; 166(1):21-7. PubMed ID: 9741081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.