These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16597255)

  • 21. An approximation algorithm for haplotype inference by maximum parsimony.
    Huang YT; Chao KM; Chen T
    J Comput Biol; 2005 Dec; 12(10):1261-74. PubMed ID: 16379533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research on parameterized algorithms of the individual haplotyping problem.
    Xie M; Chen J; Wang J
    J Bioinform Comput Biol; 2007 Jun; 5(3):795-816. PubMed ID: 17688317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Haplotype inferring via galled-tree networks is NP-complete.
    Gupta A; Karimi MM; Manuch J; Stacho L; Zhao X
    J Comput Biol; 2010 Oct; 17(10):1435-49. PubMed ID: 20937016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Penalized estimation of haplotype frequencies.
    Ayers KL; Lange K
    Bioinformatics; 2008 Jul; 24(14):1596-602. PubMed ID: 18487240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fast and exact algorithm for the median of three problem: a graph decomposition approach.
    Xu AW
    J Comput Biol; 2009 Oct; 16(10):1369-81. PubMed ID: 19747038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parameterised algorithms of the individual haplotyping problem with gaps.
    Xie M; Wang J
    Int J Bioinform Res Appl; 2013; 9(1):25-40. PubMed ID: 23207996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tractable Cases of (*,2)-Bounded Parsimony Haplotyping.
    Keijsper J; Oosterwijk T
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):234-47. PubMed ID: 26357092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inferring haplotypes at the NAT2 locus: the computational approach.
    Sabbagh A; Darlu P
    BMC Genet; 2005 Jun; 6():30. PubMed ID: 15932650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Explaining evolution via constrained persistent perfect phylogeny.
    Bonizzoni P; Carrieri AP; Della Vedova G; Trucco G
    BMC Genomics; 2014; 15 Suppl 6(Suppl 6):S10. PubMed ID: 25572381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perfect Phylogeny Problems with Missing Values.
    Kirkpatrick B; Stevens K
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):928-41. PubMed ID: 26356864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An effective haplotype assembly algorithm based on hypergraph partitioning.
    Chen X; Peng Q; Han L; Zhong T; Xu T
    J Theor Biol; 2014 Oct; 358():85-92. PubMed ID: 24954019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clustering of haplotypes based on phylogeny: how good a strategy for association testing?
    Bardel C; Darlu P; Génin E
    Eur J Hum Genet; 2006 Feb; 14(2):202-6. PubMed ID: 16306882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast algorithms for inferring evolutionary trees.
    Agarwala R; Fernández-Baca D; Slutzki G
    J Comput Biol; 1995; 2(3):397-407. PubMed ID: 8521270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complexity and Algorithms for Finding a Perfect Phylogeny from Mixed Tumor Samples.
    Hujdurovic A; Kacar U; Milanic M; Ries B; Tomescu AI
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):96-108. PubMed ID: 28113405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An algorithm to enumerate sorting reversals for signed permutations.
    Siepel AC
    J Comput Biol; 2003; 10(3-4):575-97. PubMed ID: 12935346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perfect phylogeny haplotyper: haplotype inferral using a tree model.
    Chung RH; Gusfield D
    Bioinformatics; 2003 Apr; 19(6):780-1. PubMed ID: 12691994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation.
    Lemmon AR; Milinkovitch MC
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10516-21. PubMed ID: 12142465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association mapping of complex diseases with ancestral recombination graphs: models and efficient algorithms.
    Wu Y
    J Comput Biol; 2008 Sep; 15(7):667-84. PubMed ID: 18651799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maximum likelihood haplotyping for general pedigrees.
    Fishelson M; Dovgolevsky N; Geiger D
    Hum Hered; 2005; 59(1):41-60. PubMed ID: 15802921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A class representative model for Pure Parsimony Haplotyping under uncertain data.
    Catanzaro D; Labbé M; Porretta L
    PLoS One; 2011 Mar; 6(3):e17937. PubMed ID: 21464966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.