BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16597419)

  • 1. Reviewing the low efficiency of protein utilization in heavy preruminant calves--a reductionist approach.
    van den Borne JJ; Verdonk JM; Schrama JW; Gerrits WJ
    Reprod Nutr Dev; 2006; 46(2):121-37. PubMed ID: 16597419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of feeding frequency and feeding level on nutrient utilization in heavy preruminant calves.
    van den Borne JJ; Verstegen MW; Alferink SJ; Giebels RM; Gerrits WJ
    J Dairy Sci; 2006 Sep; 89(9):3578-86. PubMed ID: 16899693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The marginal efficiency of utilization of all ileal digestible indispensable amino acids for protein gain is lower than 30% in preruminant calves between 80 and 240 kg live weight.
    Gerrits WJ; Schrama JW; Tamminga S
    J Nutr; 1998 Oct; 128(10):1774-85. PubMed ID: 9772149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of solid feed on energy and protein utilization in milk-fed veal calves.
    Labussiere E; Dubois S; van Milgen J; Bertrand G; Noblet J
    J Anim Sci; 2009 Mar; 87(3):1106-19. PubMed ID: 18997064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of energy supply on leucine utilization by growing steers at two body weights.
    Schroeder GF; Titgemeyer EC; Moore ES
    J Anim Sci; 2007 Dec; 85(12):3348-54. PubMed ID: 17609475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opportunities to enhance performance and efficiency through nutrient synchrony in concentrate-fed ruminants.
    Cole NA; Todd RW
    J Anim Sci; 2008 Apr; 86(14 Suppl):E318-33. PubMed ID: 17940155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis.
    Reynolds CK; Kristensen NB
    J Anim Sci; 2008 Apr; 86(14 Suppl):E293-305. PubMed ID: 17940161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronizing the availability of amino acids and glucose decreases fat retention in heavy preruminant calves.
    van den Borne JJ; Verstegen MW; Alferink SJ; van Ass FH; Gerrits WJ
    J Nutr; 2006 Aug; 136(8):2181-7. PubMed ID: 16857838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opportunities to enhance performance and efficiency through nutrient synchrony in forage-fed ruminants.
    Hersom MJ
    J Anim Sci; 2008 Apr; 86(14 Suppl):E306-17. PubMed ID: 17940154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole body and muscle energy metabolism in preruminant calves: effects of nutrient synchrony and physical activity.
    van den Borne JJ; Hocquette JF; Verstegen MW; Gerrits WJ
    Br J Nutr; 2007 Apr; 97(4):667-75. PubMed ID: 17349079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and nutrient utilization by calves fed milk replacers containing milk or soybean protein-concentrate heated to various degrees.
    Volcani R; Gordin S; Nitsan Z; Hasdai A
    J Dairy Sci; 1971 Sep; 54(9):1294-9. PubMed ID: 5106734
    [No Abstract]   [Full Text] [Related]  

  • 12. Preruminant calf nutrition.
    Tomkins T; Jaster EH
    Vet Clin North Am Food Anim Pract; 1991 Jul; 7(2):557-76. PubMed ID: 1893285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein required in starters for calves fed milk once or twice daily.
    Morrill JL; Melton SL
    J Dairy Sci; 1973 Jul; 56(7):927-31. PubMed ID: 4720085
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of rumen-degradable protein balance deficit on voluntary intake, microbial protein synthesis, and nitrogen metabolism in growing double-muscled Belgian Blue bulls fed corn silage-based diet.
    Valkeners D; Théwis A; Van Laere M; Beckers Y
    J Anim Sci; 2008 Mar; 86(3):680-90. PubMed ID: 18073288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of undegradable intake protein supplementation on intake, digestion, microbial efficiency, in situ disappearance, and plasma hormones and metabolites in steers fed low-quality grass hay.
    Reed JJ; O'Neil MR; Lardy GP; Vonnahme KA; Reynolds LP; Caton JS
    J Anim Sci; 2007 Apr; 85(4):1092-101. PubMed ID: 17178812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some new concepts of protein nutrition of feedlot cattle. (Metabolizable protein or metabolizable amino acids).
    Burroughs W; Trenkle AH; Vetter RL
    Vet Med Small Anim Clin; 1971 Mar; 66(3):238-44 passim. PubMed ID: 5205134
    [No Abstract]   [Full Text] [Related]  

  • 17. Low-dietary protein intake induces problems with glucose homeostasis and results in hepatic steatosis in heavy milk-fed calves.
    Gerrits WJ; van den Borne JJ; Blum JW
    Domest Anim Endocrinol; 2008 Aug; 35(2):121-9. PubMed ID: 18638660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of feeding Lagerstroemia speciosa and conventional fodder based rations on nutrient utilization, ruminal metabolites and body weight gain in mithun (Bos frontalis).
    Prakash B; Dhali A; Mondal M; Sangtam M; Khate K; Rathore SS; Rajkhowa C
    J Anim Physiol Anim Nutr (Berl); 2008 Oct; 92(5):591-6. PubMed ID: 19012603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations of energy metabolism in weanling barrows: the interaction of dietary energy concentration and daily feed (energy) intake.
    Oresanya TF; Beaulieu AD; Patience JF
    J Anim Sci; 2008 Feb; 86(2):348-63. PubMed ID: 17998419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of season and inclusion of corn distillers dried grains with solubles in creep feed on intake, microbial protein synthesis and efficiency, ruminal fermentation, digestion, and performance of nursing calves grazing native range in southeastern North Dakota.
    Reed JJ; Lardy GP; Bauer ML; Gibson M; Caton JS
    J Anim Sci; 2006 Aug; 84(8):2200-12. PubMed ID: 16864882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.