These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16597507)

  • 1. Resonance frequency analysis of implants in the guinea pig model: influence of boundary conditions and orientation of the transducer.
    Pattijn V; Jaecques SV; De Smet E; Muraru L; Van Lierde C; Van der Perre G; Naert I; Vander Sloten J
    Med Eng Phys; 2007 Mar; 29(2):182-90. PubMed ID: 16597507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive effect of early loading on implant stability in the bi-cortical guinea-pig model.
    De Smet E; Jaecques S; Vandamme K; Vander Sloten J; Naert I
    Clin Oral Implants Res; 2005 Aug; 16(4):402-7. PubMed ID: 16117763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The resonance frequencies and mode shapes of dental implants: Rigid body behaviour versus bending behaviour. A numerical approach.
    Pattijn V; Van Lierde C; Van der Perre G; Naert I; Vander Sloten J
    J Biomech; 2006; 39(5):939-47. PubMed ID: 16488232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the orientation of the Osstell transducer during measurement of dental implant stability using resonance frequency analysis: a numerical approach.
    Capek L; Simunek A; Slezak R; Dzan L
    Med Eng Phys; 2009 Sep; 31(7):764-9. PubMed ID: 19297232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance frequency measurements in vivo and related surface properties of magnesium-incorporated, micropatterned and magnesium-incorporated TiUnite, Osseotite, SLA and TiOblast implants.
    Sul YT; Jönsson J; Yoon GS; Johansson C
    Clin Oral Implants Res; 2009 Oct; 20(10):1146-55. PubMed ID: 19719742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of transducer orientation on Osstell stability measurements of osseointegrated implants.
    Veltri M; Balleri P; Ferrari M
    Clin Implant Dent Relat Res; 2007 Mar; 9(1):60-4. PubMed ID: 17362497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of resonance frequency analysis to evaluate dental implant stability: simulation and histomorphometrical animal experiments.
    Ito Y; Sato D; Yoneda S; Ito D; Kondo H; Kasugai S
    Clin Oral Implants Res; 2008 Jan; 19(1):9-14. PubMed ID: 17986265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of tension in wires of fine-wire external fixators.
    Dong Y; Saleh M; Yang L
    Med Eng Phys; 2005 Jan; 27(1):63-6. PubMed ID: 15604006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamic analytical model for impact evaluation of percutaneous implants.
    Swain R; Faulkner G; Raboud D; Wolfaardt J
    J Biomech Eng; 2008 Oct; 130(5):051013. PubMed ID: 19045520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational simulation of dental implant osseointegration through resonance frequency analysis.
    Pérez MA; Moreo P; García-Aznar JM; Doblaré M
    J Biomech; 2008; 41(2):316-25. PubMed ID: 17976627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the implant/bone interface by using natural frequency analysis.
    Huang HM; Pan LC; Lee SY; Chiu CL; Fan KH; Ho KN
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2000 Sep; 90(3):285-91. PubMed ID: 10982948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of constant strain rate, composed of varying amplitude and frequency, of early loading on peri-implant bone (re)modelling.
    De Smet E; Jaecques SV; Jansen JJ; Walboomers F; Vander Sloten J; Naert IE
    J Clin Periodontol; 2007 Jul; 34(7):618-24. PubMed ID: 17555413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An implantable telemetry device to measure intra-articular tibial forces.
    D'Lima DD; Townsend CP; Arms SW; Morris BA; Colwell CW
    J Biomech; 2005 Feb; 38(2):299-304. PubMed ID: 15598457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of strain at low-frequency loading on peri-implant bone (re)modelling: a guinea-pig experimental study.
    De Smet E; Jaecques SV; Jansen JJ; Walboomers F; Vander Sloten J; Naert IE
    Clin Oral Implants Res; 2008 Aug; 19(8):733-9. PubMed ID: 18492084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural frequency analysis of osseointegration for trans-femoral implant.
    Shao F; Xu W; Crocombe A; Ewins D
    Ann Biomed Eng; 2007 May; 35(5):817-24. PubMed ID: 17377843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration characteristics of a circular cylindrical panel piezoelectric transducer.
    Yang Z; Yang J; Hu Y; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2327-35. PubMed ID: 18986881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of osseointegration degree and pattern on resonance frequency in the assessment of dental implant stability using finite element analysis.
    Deng B; Tan KB; Liu GR; Lu Y
    Int J Oral Maxillofac Implants; 2008; 23(6):1082-8. PubMed ID: 19216277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison between insertion torque and resonance frequency in the assessment of torque capacity and primary stability of Brånemark system implants.
    Turkyilmaz I
    J Oral Rehabil; 2006 Oct; 33(10):754-9. PubMed ID: 16938104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of constraint of total knee replacement.
    Haider H; Walker PS
    J Biomech; 2005 Feb; 38(2):341-8. PubMed ID: 15598462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.