BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16597721)

  • 1. Higher-dimensional neurons explain the tuning and dynamics of working memory cells.
    Singh R; Eliasmith C
    J Neurosci; 2006 Apr; 26(14):3667-78. PubMed ID: 16597721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal population coding of parametric working memory.
    Barak O; Tsodyks M; Romo R
    J Neurosci; 2010 Jul; 30(28):9424-30. PubMed ID: 20631171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability.
    Fall CP; Lewis TJ; Rinzel J
    Biol Cybern; 2005 Aug; 93(2):109-18. PubMed ID: 15806392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow manifolds within network dynamics encode working memory efficiently and robustly.
    Ghazizadeh E; Ching S
    PLoS Comput Biol; 2021 Sep; 17(9):e1009366. PubMed ID: 34525089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks.
    Renart A; Song P; Wang XJ
    Neuron; 2003 May; 38(3):473-85. PubMed ID: 12741993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization.
    Wei Z; Wang XJ; Wang DH
    J Neurosci; 2012 Aug; 32(33):11228-40. PubMed ID: 22895707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational and in vitro studies of persistent activity: edging towards cellular and synaptic mechanisms of working memory.
    Compte A
    Neuroscience; 2006 Apr; 139(1):135-51. PubMed ID: 16337341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lateral connections on the accuracy of the population code for a network of spiking neurons.
    Spiridon M; Gerstner W
    Network; 2001 Nov; 12(4):409-21. PubMed ID: 11762897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analog implementation of biologically plausible neurons using CCII building blocks.
    Sharifipoor O; Ahmadi A
    Neural Netw; 2012 Dec; 36():129-35. PubMed ID: 23103972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional Bistability, a Generic Cellular Mnemonic Mechanism for Robust and Flexible Working Memory Computations.
    Rodriguez G; Sarazin M; Clemente A; Holden S; Paz JT; Delord B
    J Neurosci; 2018 May; 38(22):5209-5219. PubMed ID: 29712783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic learning and memory with a persistent firing neuron and a habituating synapse: a model of short term persistent habituation.
    Ramanathan K; Ning N; Dhanasekar D; Li G; Shi L; Vadakkepat P
    Int J Neural Syst; 2012 Aug; 22(4):1250015. PubMed ID: 22830965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Randomly connected networks have short temporal memory.
    Wallace E; Maei HR; Latham PE
    Neural Comput; 2013 Jun; 25(6):1408-39. PubMed ID: 23517097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamics of memory retrieval in hierarchical networks.
    Gu Y; Gong P
    J Comput Neurosci; 2016 Jun; 40(3):247-68. PubMed ID: 26922679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal neuronal tuning for finite stimulus spaces.
    Brown WM; Bäcker A
    Neural Comput; 2006 Jul; 18(7):1511-26. PubMed ID: 16764512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory.
    Zylberberg J; Strowbridge BW
    Annu Rev Neurosci; 2017 Jul; 40():603-627. PubMed ID: 28772102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "What" and "where" in visual working memory: a computational neurodynamical perspective for integrating FMRI and single-neuron data.
    Deco G; Rolls ET; Horwitz B
    J Cogn Neurosci; 2004 May; 16(4):683-701. PubMed ID: 15165356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex.
    Spaak E; Watanabe K; Funahashi S; Stokes MG
    J Neurosci; 2017 Jul; 37(27):6503-6516. PubMed ID: 28559375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.