These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 16597734)

  • 1. Amphetamine exposure enhances habit formation.
    Nelson A; Killcross S
    J Neurosci; 2006 Apr; 26(14):3805-12. PubMed ID: 16597734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine sensitization by methamphetamine treatment prior to instrumental training delays the transition into habit in female rats.
    Schoenberg HL; Evans C; Bausch L; Wootton A; Kirshenbaum A; Toufexis DJ
    Behav Brain Res; 2022 Feb; 418():113636. PubMed ID: 34687828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists.
    Nelson AJ; Killcross S
    Front Neurosci; 2013; 7():76. PubMed ID: 23720609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation.
    Faure A; Haberland U; Condé F; El Massioui N
    J Neurosci; 2005 Mar; 25(11):2771-80. PubMed ID: 15772337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats.
    Coutureau E; Killcross S
    Behav Brain Res; 2003 Nov; 146(1-2):167-74. PubMed ID: 14643469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing behavioral control across reinforcer solutions on a fixed-ratio schedule of reinforcement in rats.
    Shillinglaw JE; Everitt IK; Robinson DL
    Alcohol; 2014 Jun; 48(4):337-44. PubMed ID: 24680666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmented reinforcer value and accelerated habit formation after repeated amphetamine treatment.
    Nordquist RE; Voorn P; de Mooij-van Malsen JG; Joosten RN; Pennartz CM; Vanderschuren LJ
    Eur Neuropsychopharmacol; 2007 Jul; 17(8):532-40. PubMed ID: 17275266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of endogenous opioid activity during instrumental learning enhances habit acquisition.
    Wassum KM; Cely IC; Maidment NT; Balleine BW
    Neuroscience; 2009 Oct; 163(3):770-80. PubMed ID: 19619616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected food outcomes can return a habit to goal-directed action.
    Bouton ME; Broomer MC; Rey CN; Thrailkill EA
    Neurobiol Learn Mem; 2020 Mar; 169():107163. PubMed ID: 31927082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of amphetamine exposure on outcome-selective Pavlovian-instrumental transfer in rats.
    Shiflett MW
    Psychopharmacology (Berl); 2012 Oct; 223(3):361-70. PubMed ID: 22562522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine agonists increase perseverative instrumental responses but do not restore habit formation in a rat model of Parkinsonism.
    Faure A; Leblanc-Veyrac P; El Massioui N
    Neuroscience; 2010 Jun; 168(2):477-86. PubMed ID: 20362642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning.
    Yin HH; Knowlton BJ; Balleine BW
    Eur J Neurosci; 2004 Jan; 19(1):181-9. PubMed ID: 14750976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context and renewal of habits and goal-directed actions after extinction.
    Steinfeld MR; Bouton ME
    J Exp Psychol Anim Learn Cogn; 2020 Oct; 46(4):408-421. PubMed ID: 32378909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contextual control of instrumental actions and habits.
    Thrailkill EA; Bouton ME
    J Exp Psychol Anim Learn Cogn; 2015 Jan; 41(1):69-80. PubMed ID: 25706547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of prelimbic and infralimbic cortex respectively affects minimally-trained and extensively-trained goal-directed actions.
    Shipman ML; Trask S; Bouton ME; Green JT
    Neurobiol Learn Mem; 2018 Nov; 155():164-172. PubMed ID: 30053577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional modulation of goal-directed actions by prefrontal cortical dopamine.
    Hitchcott PK; Quinn JJ; Taylor JR
    Cereb Cortex; 2007 Dec; 17(12):2820-7. PubMed ID: 17322558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed rewards facilitate habit formation.
    Urcelay GP; Jonkman S
    J Exp Psychol Anim Learn Cogn; 2019 Oct; 45(4):413-421. PubMed ID: 31368767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine efflux in the nucleus accumbens during within-session extinction, outcome-dependent, and habit-based instrumental responding for food reward.
    Ahn S; Phillips AG
    Psychopharmacology (Berl); 2007 Apr; 191(3):641-51. PubMed ID: 16960698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macaques fail to develop habit responses during extended training on a reinforcer devaluation task.
    LaFlamme EM; Ahmed F; Forcelli PA; Malkova L
    Behav Neurosci; 2022 Apr; 136(2):159-171. PubMed ID: 35025530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incentive sensitization by previous amphetamine exposure: increased cue-triggered "wanting" for sucrose reward.
    Wyvell CL; Berridge KC
    J Neurosci; 2001 Oct; 21(19):7831-40. PubMed ID: 11567074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.