These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 16597999)
1. Reduction of soluble and insoluble iron forms by membrane fractions of Shewanella oneidensis grown under aerobic and anaerobic conditions. Ruebush SS; Brantley SL; Tien M Appl Environ Microbiol; 2006 Apr; 72(4):2925-35. PubMed ID: 16597999 [TBL] [Abstract][Full Text] [Related]
2. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1. Maier TM; Myers CR BMC Microbiol; 2004 Jun; 4():23. PubMed ID: 15212692 [TBL] [Abstract][Full Text] [Related]
3. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Gescher JS; Cordova CD; Spormann AM Mol Microbiol; 2008 May; 68(3):706-19. PubMed ID: 18394146 [TBL] [Abstract][Full Text] [Related]
4. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms. Lies DP; Hernandez ME; Kappler A; Mielke RE; Gralnick JA; Newman DK Appl Environ Microbiol; 2005 Aug; 71(8):4414-26. PubMed ID: 16085832 [TBL] [Abstract][Full Text] [Related]
5. SO2907, a putative TonB-dependent receptor, is involved in dissimilatory iron reduction by Shewanella oneidensis strain MR-1. Qian Y; Shi L; Tien M J Biol Chem; 2011 Sep; 286(39):33973-80. PubMed ID: 21813652 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of membranous proteomics of Shewanella decolorationis S12 grown with azo compound or Fe (III) citrate as sole terminal electron acceptor. Wang B; Xu M; Sun G Appl Microbiol Biotechnol; 2010 May; 86(5):1513-23. PubMed ID: 20309544 [TBL] [Abstract][Full Text] [Related]
7. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor. Jones ME; Fennessey CM; DiChristina TJ; Taillefert M Environ Microbiol; 2010 Apr; 12(4):938-50. PubMed ID: 20089045 [TBL] [Abstract][Full Text] [Related]
8. The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species. Murphy JN; Saltikov CW J Bacteriol; 2007 Mar; 189(6):2283-90. PubMed ID: 17209025 [TBL] [Abstract][Full Text] [Related]
9. Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1. Bencharit S; Ward MJ J Bacteriol; 2005 Jul; 187(14):5049-53. PubMed ID: 15995227 [TBL] [Abstract][Full Text] [Related]
10. Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDa c-type cytochrome. Myers CR; Myers JM Biochim Biophys Acta; 1997 Jun; 1326(2):307-18. PubMed ID: 9218561 [TBL] [Abstract][Full Text] [Related]
11. Survival of Anaerobic Fe Bennett BD; Redford KE; Gralnick JA J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378887 [No Abstract] [Full Text] [Related]
12. Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Viamajala S; Peyton BM; Sani RK; Apel WA; Petersen JN Biotechnol Prog; 2004; 20(1):87-95. PubMed ID: 14763828 [TBL] [Abstract][Full Text] [Related]
13. Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Ross DE; Brantley SL; Tien M Appl Environ Microbiol; 2009 Aug; 75(16):5218-26. PubMed ID: 19542342 [TBL] [Abstract][Full Text] [Related]
14. Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of Kasai T; Suzuki Y; Kouzuma A; Watanabe K Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30504209 [No Abstract] [Full Text] [Related]
15. Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. Dobbin PS; Butt JN; Powell AK; Reid GA; Richardson DJ Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):439-48. PubMed ID: 10455032 [TBL] [Abstract][Full Text] [Related]
16. Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. Saffarini DA; Schultz R; Beliaev A J Bacteriol; 2003 Jun; 185(12):3668-71. PubMed ID: 12775705 [TBL] [Abstract][Full Text] [Related]
17. Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. Bücking C; Popp F; Kerzenmacher S; Gescher J FEMS Microbiol Lett; 2010 May; 306(2):144-51. PubMed ID: 20370837 [TBL] [Abstract][Full Text] [Related]
18. Mutational and gene expression analysis of mtrDEF, omcA and mtrCAB during arsenate and iron reduction in Shewanella sp. ANA-3. Reyes C; Murphy JN; Saltikov CW Environ Microbiol; 2010 Jul; 12(7):1878-88. PubMed ID: 20236164 [TBL] [Abstract][Full Text] [Related]
19. Comparative c-type cytochrome expression analysis in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C grown with soluble and insoluble oxidized metal electron acceptors. Nissen S; Liu X; Chourey K; Hettich RL; Wagner DD; Pfiffner SM; Löffler FE Biochem Soc Trans; 2012 Dec; 40(6):1204-10. PubMed ID: 23176455 [TBL] [Abstract][Full Text] [Related]
20. Genomic plasticity enables a secondary electron transport pathway in Shewanella oneidensis. Schicklberger M; Sturm G; Gescher J Appl Environ Microbiol; 2013 Feb; 79(4):1150-9. PubMed ID: 23220953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]