These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1659822)

  • 1. Interactions of salsolinol with oxidative enzymes.
    Fa Z; Dryhurst G
    Biochem Pharmacol; 1991 Nov; 42(11):2209-19. PubMed ID: 1659822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of 5-hydroxytryptamine with oxidative enzymes.
    Wrona MZ; Dryhurst G
    Biochem Pharmacol; 1991 Apr; 41(8):1145-62. PubMed ID: 1901210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation chemistry of the endogenous central nervous system alkaloid salsolinol-1-carboxylic acid.
    Zhang F; Dryhurst G
    J Med Chem; 1993 Jan; 36(1):11-20. PubMed ID: 8421275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation chemistry and biochemistry of the central mammalian alkaloid 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline.
    Zhang F; Goyal RN; Blank CL; Dryhurst G
    J Med Chem; 1992 Jan; 35(1):82-93. PubMed ID: 1732536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative modification of human ceruloplasmin induced by a catechol neurotoxin, salsolinol.
    Kim SS; Kang JY; Kang JH
    BMB Rep; 2016 Jan; 49(1):45-50. PubMed ID: 26077029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further insights into the oxidation chemistry and biochemistry of the serotonergic neurotoxin 5,6-dihydroxytryptamine.
    Singh S; Dryhurst G
    J Med Chem; 1990 Nov; 33(11):3035-44. PubMed ID: 2172537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and enzyme-mediated oxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine: mechanistic insights.
    Tabatabaie T; Dryhurst G
    J Med Chem; 1992 Jun; 35(12):2261-74. PubMed ID: 1319496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of glutathione on the oxidation of 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline: chemistry of potential relevance to the addictive and neurodegenerative consequences of ethanol use.
    Han QP; Dryhurst G
    J Med Chem; 1996 Mar; 39(7):1494-508. PubMed ID: 8691480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative conjugation of chlorogenic acid with glutathione. Structural characterization of addition products and a new nitrite-Promoted pathway.
    Panzella L; Napolitano A; d'Ischia M
    Bioorg Med Chem; 2003 Nov; 11(22):4797-805. PubMed ID: 14556796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Metabolic Fate of ortho-Quinones Derived from Catecholamine Metabolites.
    Ito S; Yamanaka Y; Ojika M; Wakamatsu K
    Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26828480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible role of salsolinol quinone methide in the decrease of RCSN-3 cell survival.
    Martinez-Alvarado P; Dagnino-Subiabre A; Paris I; Metodiewa D; Welch CJ; Olea-Azar C; Caviedes P; Caviedes R; Segura-Aguilar J
    Biochem Biophys Res Commun; 2001 May; 283(5):1069-76. PubMed ID: 11355881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of eugenol to form DNA adducts and 8-hydroxy-2'-deoxyguanosine: role of quinone methide derivative in DNA adduct formation.
    Bodell WJ; Ye Q; Pathak DN; Pongracz K
    Carcinogenesis; 1998 Mar; 19(3):437-43. PubMed ID: 9525278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of novel toxic compounds from oxidative interaction between salsolinol and cysteine.
    Zhang F
    J Pharm Biomed Anal; 2002 Sep; 30(2):197-208. PubMed ID: 12191704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains.
    Naoi M; Maruyama W; Nagy GM
    Neurotoxicology; 2004 Jan; 25(1-2):193-204. PubMed ID: 14697894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of o-quinone/quinone methide metabolites of quercetin in a cellular in vitro system.
    Awad HM; Boersma MG; Boeren S; van der Woude H; van Zanden J; van Bladeren PJ; Vervoort J; Rietjens IM
    FEBS Lett; 2002 Jun; 520(1-3):30-4. PubMed ID: 12044865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of transient covalent protein and DNA adducts by quercetin in cells with and without oxidative enzyme activity.
    van der Woude H; Alink GM; van Rossum BE; Walle K; van Steeg H; Walle T; Rietjens IM
    Chem Res Toxicol; 2005 Dec; 18(12):1907-16. PubMed ID: 16359181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
    Ramsden CA; Riley PA
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxidase as an alternative to tyrosinase in the oxidative polymerization of 5,6-dihydroxyindoles to melanin(s).
    d'Ischia M; Napolitano A; Prota G
    Biochim Biophys Acta; 1991 Mar; 1073(2):423-30. PubMed ID: 1849012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.