BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 16598768)

  • 1. CK2 signaling in androgen-dependent and -independent prostate cancer.
    Wang G; Ahmad KA; Unger G; Slaton JW; Ahmed K
    J Cell Biochem; 2006 Oct; 99(2):382-91. PubMed ID: 16598768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular regulation of androgen action in prostate cancer.
    Dehm SM; Tindall DJ
    J Cell Biochem; 2006 Oct; 99(2):333-44. PubMed ID: 16518832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular hydrogen peroxide production is an upstream event in apoptosis induced by down-regulation of casein kinase 2 in prostate cancer cells.
    Ahmad KA; Wang G; Ahmed K
    Mol Cancer Res; 2006 May; 4(5):331-8. PubMed ID: 16687488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Androgen receptor action in hormone-dependent and recurrent prostate cancer.
    Agoulnik IU; Weigel NL
    J Cell Biochem; 2006 Oct; 99(2):362-72. PubMed ID: 16619264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GCP-mediated growth inhibition and apoptosis of prostate cancer cells via androgen receptor-dependent and -independent mechanisms.
    Tepper CG; Vinall RL; Wee CB; Xue L; Shi XB; Burich R; Mack PC; de Vere White RW
    Prostate; 2007 Apr; 67(5):521-35. PubMed ID: 17252539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-beta signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells.
    Zhu ML; Partin JV; Bruckheimer EM; Strup SE; Kyprianou N
    Prostate; 2008 Feb; 68(3):287-95. PubMed ID: 18163430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an androgen-deprivation induced and androgen suppressed human prostate cancer cell line.
    Lee SO; Dutt SS; Nadiminty N; Pinder E; Liao H; Gao AC
    Prostate; 2007 Sep; 67(12):1293-300. PubMed ID: 17626246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nkx3.1 and p27(KIP1) cooperate in proliferation inhibition and apoptosis induction in human androgen-independent prostate cancer cells.
    Wang P; Ma Q; Luo J; Liu B; Tan F; Zhang Z; Chen Z
    Cancer Invest; 2009 May; 27(4):369-75. PubMed ID: 19266349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p53 is dispensable for the induction of apoptosis after inhibition of protein kinase CK2.
    Schneider CC; Hessenauer A; Montenarh M; Götz C
    Prostate; 2010 Feb; 70(2):126-34. PubMed ID: 19760628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of protein kinase CK2 leads to a modulation of androgen receptor dependent transcription in prostate cancer cells.
    Götz C; Bachmann C; Montenarh M
    Prostate; 2007 Feb; 67(2):125-34. PubMed ID: 17044081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal growth factor-induced neuroendocrine differentiation and apoptotic resistance of androgen-independent human prostate cancer cells.
    Humez S; Monet M; Legrand G; Lepage G; Delcourt P; Prevarskaya N
    Endocr Relat Cancer; 2006 Mar; 13(1):181-95. PubMed ID: 16601287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle dependent regulation of protein kinase CK2 signaling to the nuclear matrix.
    Wang H; Yu S; Davis AT; Ahmed K
    J Cell Biochem; 2003 Mar; 88(4):812-22. PubMed ID: 12577315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5alpha-androstane-3alpha,17beta-diol supports human prostate cancer cell survival and proliferation through androgen receptor-independent signaling pathways: implication of androgen-independent prostate cancer progression.
    Yang Q; Titus MA; Fung KM; Lin HK
    J Cell Biochem; 2008 Aug; 104(5):1612-24. PubMed ID: 18320593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of CK2 activity provokes different responses in hormone-sensitive and hormone-refractory prostate cancer cells.
    Hessenauer A; Montenarh M; Götz C
    Int J Oncol; 2003 Jun; 22(6):1263-70. PubMed ID: 12738992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Androgen axis in prostate cancer.
    Culig Z; Bartsch G
    J Cell Biochem; 2006 Oct; 99(2):373-81. PubMed ID: 16598769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PC-1/PrLZ contributes to malignant progression in prostate cancer.
    Zhang H; Wang J; Pang B; Liang RX; Li S; Huang PT; Wang R; Chung LW; Zhau HE; Huang C; Zhou JG
    Cancer Res; 2007 Sep; 67(18):8906-13. PubMed ID: 17875733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitous mitochondrial creatine kinase is overexpressed in the conditioned medium and the extract of LNCaP lineaged androgen independent cell lines and facilitates prostate cancer progression.
    Pang B; Zhang H; Wang J; Chen WZ; Li SH; Shi QG; Liang RX; Xie BX; Wu RQ; Qian XL; Yu L; Li QM; Huang CF; Zhou JG
    Prostate; 2009 Aug; 69(11):1176-87. PubMed ID: 19415690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ERRgamma suppresses cell proliferation and tumor growth of androgen-sensitive and androgen-insensitive prostate cancer cells and its implication as a therapeutic target for prostate cancer.
    Yu S; Wang X; Ng CF; Chen S; Chan FL
    Cancer Res; 2007 May; 67(10):4904-14. PubMed ID: 17510420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key targets of hormonal treatment of prostate cancer. Part 1: the androgen receptor and steroidogenic pathways.
    Vis AN; Schröder FH
    BJU Int; 2009 Aug; 104(4):438-48. PubMed ID: 19558559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgen action during prostate carcinogenesis.
    Wang D; Tindall DJ
    Methods Mol Biol; 2011; 776():25-44. PubMed ID: 21796518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.