BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16599126)

  • 21. [Heavy metals removal and its kinetics in contaminated soil under effects of EDTA washing].
    Ke X; Li PJ; Zhang Y; Sun TH
    Ying Yong Sheng Tai Xue Bao; 2007 Mar; 18(3):601-6. PubMed ID: 17552200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Extraction of heavy metals from contaminated soils with EDTA and their redistribution of fractions].
    Wang XH; Liu YG; Zeng GM; Zhou CH; Li X; Fan T; Zuo M
    Huan Jing Ke Xue; 2006 May; 27(5):1008-12. PubMed ID: 16850850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.
    Guo J; Feng R; Ding Y; Wang R
    J Environ Manage; 2014 Aug; 141():1-8. PubMed ID: 24762567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sediment washing by EDTA and its reclamation by sodium polyamidoamine-multi dithiocarbamate.
    Deng T; Zhang B; Li F; Jin L
    Chemosphere; 2017 Feb; 168():450-456. PubMed ID: 27829161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anthropogenic sources of heavy metals in the Indian Ocean coast of Kenya.
    Ochieng EZ; Lalah JO; Wandiga SO
    Bull Environ Contam Toxicol; 2009 Oct; 83(4):600-7. PubMed ID: 19582362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil.
    Liphadzi MS; Kirkham MB; Paulsen GM
    Environ Technol; 2006 Jun; 27(6):695-704. PubMed ID: 16865925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical reagent-assisted phytoextraction of heavy metals by Bryophyllum laetivirens from garden soil made of sludge.
    Li F; Yang F; Chen Y; Jin H; Leng Y; Wang J
    Chemosphere; 2020 Aug; 253():126574. PubMed ID: 32278903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilization of PCB-contaminated Hudson River sediment by thermal processing and phytoremediation.
    Urbaniak M; Baran A; Lee S; Kannan K
    Sci Total Environ; 2020 Oct; 738():139841. PubMed ID: 32526423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil.
    Meers E; Lesage E; Lamsal S; Hopgood M; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):129-42. PubMed ID: 16128444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes.
    Zhang W; Feng H; Chang J; Qu J; Xie H; Yu L
    Environ Pollut; 2009 May; 157(5):1533-43. PubMed ID: 19217701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of applying sewage sludge on chemical form distribution and bioavailability of heavy metals in soil].
    Song LL; Tie M; Zhang ZH; Hui XJ; Jing K; Chen ZL; Zhang Y
    Ying Yong Sheng Tai Xue Bao; 2012 Oct; 23(10):2701-7. PubMed ID: 23359929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site.
    Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM
    Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.
    Desrosiers M; Gagnon C; Masson S; Martel L; Babut MP
    Sci Total Environ; 2008 Jan; 389(1):101-14. PubMed ID: 17900660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of metal-ethylenediaminetetraacetic acid chelates onto lake sediment.
    Sillanpää M; Rämö J
    Chemosphere; 2001 Nov; 45(6-7):881-5. PubMed ID: 11695609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Concentrations and distribution of heavy metals in urban sewage discharge channel of Tianjin].
    Wu GH; Zhu ZZ; Liu EB; Li WQ; Zheng HQ
    Huan Jing Ke Xue; 2008 Feb; 29(2):413-20. PubMed ID: 18613514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal transfer to plants grown on a dredged sediment: use of radioactive isotope 203Hg and titanium.
    Caille N; Vauleon C; Leyval C; Morel JL
    Sci Total Environ; 2005 Apr; 341(1-3):227-39. PubMed ID: 15833254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Chemical fractionation and pollution characteristics of heavy metals in the sediment of Nansihu Lake and its main inflow rivers, China].
    Liu EF; Shen J; Yang LY; Zhu YX; Sun QY; Wang JJ
    Huan Jing Ke Xue; 2007 Jun; 28(6):1377-83. PubMed ID: 17674753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of the mobility of metal-EDTA complexes in groundwater: the influence of contaminant metals.
    Friedly JC; Kent DB; Davis JA
    Environ Sci Technol; 2002 Feb; 36(3):355-63. PubMed ID: 11871549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin.
    Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.