These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16599215)

  • 1. Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section.
    Tsai TH; Lin CY; Tsai HJ; Chen SY; Tai SP; Lin KH; Sun CK
    Opt Lett; 2006 Apr; 31(7):930-2. PubMed ID: 16599215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window.
    Liu H; Wang J; Peng X; Zhuang Z; Qiu P; Wang K
    J Biophotonics; 2018 Jul; 11(7):e201700351. PubMed ID: 29603649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton excitation spectra in biological samples.
    Dickinson ME; Simbuerger E; Zimmermann B; Waters CW; Fraser SE
    J Biomed Opt; 2003 Jul; 8(3):329-38. PubMed ID: 12880336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence imaging using a fluorescent protein with a large Stokes shift.
    Kogure T; Kawano H; Abe Y; Miyawaki A
    Methods; 2008 Jul; 45(3):223-6. PubMed ID: 18586106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer.
    Mizuno H; Sawano A; Eli P; Hama H; Miyawaki A
    Biochemistry; 2001 Feb; 40(8):2502-10. PubMed ID: 11327872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein.
    Long JZ; Lackan CS; Hadjantonakis AK
    BMC Biotechnol; 2005 Jul; 5():20. PubMed ID: 15996270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging.
    Hense A; Prunsche B; Gao P; Ishitsuka Y; Nienhaus K; Nienhaus GU
    Sci Rep; 2015 Dec; 5():18006. PubMed ID: 26648024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1700 nm window.
    Deng X; Ma X; Zhang W; Qin M; Xie W; Qiu P; Yin J; Wang K
    Anal Chim Acta; 2023 May; 1255():341118. PubMed ID: 37032053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monomeric red fluorescent proteins with a large Stokes shift.
    Piatkevich KD; Hulit J; Subach OM; Wu B; Abdulla A; Segall JE; Verkhusha VV
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5369-74. PubMed ID: 20212155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon excitation and photoconversion of EosFP in dual-color 4Pi confocal microscopy.
    Ivanchenko S; Glaschick S; Röcker C; Oswald F; Wiedenmann J; Nienhaus GU
    Biophys J; 2007 Jun; 92(12):4451-7. PubMed ID: 17384061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region.
    Schneider M; Barozzi S; Testa I; Faretta M; Diaspro A
    Biophys J; 2005 Aug; 89(2):1346-52. PubMed ID: 15908572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain.
    Hontani Y; Xia F; Xu C
    Sci Adv; 2021 Mar; 7(12):. PubMed ID: 33731355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved "optical highlighter" probes derived from discosoma red fluorescent protein.
    Robinson LC; Marchant JS
    Biophys J; 2005 Feb; 88(2):1444-57. PubMed ID: 15556986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors.
    Drummond DR; Carter N; Cross RA
    J Microsc; 2002 May; 206(Pt 2):161-9. PubMed ID: 12000556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer.
    Thaler C; Koushik SV; Blank PS; Vogel SS
    Biophys J; 2005 Oct; 89(4):2736-49. PubMed ID: 16040744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy.
    Salomonnson E; Mihalko LA; Verkhusha VV; Luker KE; Luker GD
    J Biomed Opt; 2012 Sep; 17(9):96001. PubMed ID: 22975677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of dual-gene expression in arteries using an optical imaging method.
    Chen HH; Zhan X; Kumar A; Du X; Hammond H; Cheng L; Yang X
    J Biomed Opt; 2004; 9(6):1223-9. PubMed ID: 15568943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphoton Bleaching of Red Fluorescent Proteins and the Ways to Reduce It.
    Drobizhev M; Molina RS; Franklin J
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved mRFP1 adds red to bimolecular fluorescence complementation.
    Jach G; Pesch M; Richter K; Frings S; Uhrig JF
    Nat Methods; 2006 Aug; 3(8):597-600. PubMed ID: 16862132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing two-photon multiple fluorophore imaging of the human trabecular meshwork.
    Gonzalez JM; Ammar MJ; Ko MK; Tan JC
    Mol Vis; 2016; 22():203-12. PubMed ID: 27122962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.