These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16599439)

  • 1. Formation of naphthalene, indene, and benzene from cyclopentadiene pyrolysis: a DFT study.
    Wang D; Violi A; Kim DH; Mullholland JA
    J Phys Chem A; 2006 Apr; 110(14):4719-25. PubMed ID: 16599439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAH Growth from the pyrolysis of CPD, indene and naphthalene mixture.
    Lu M; Mulholland JA
    Chemosphere; 2004 Apr; 55(4):605-10. PubMed ID: 15006513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ab initio G3-type/statistical theory study of the formation of indene in combustion flames. II. The pathways originating from reactions of cyclic C5 species-cyclopentadiene and cyclopentadienyl radicals.
    Kislov VV; Mebel AM
    J Phys Chem A; 2008 Jan; 112(4):700-16. PubMed ID: 18181589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism for the growth of polycyclic aromatic hydrocarbons from the reactions of naphthalene with cyclopentadienyl and indenyl.
    Xu F; Shi X; Zhang Q; Wang W
    Chemosphere; 2016 Nov; 162():345-54. PubMed ID: 27538266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1,4-Addition of benzene to a dihydrocyclopent[a]indene diradical: synthesis and DFT study.
    Marsella MJ; Yoon K; Estassi S; Tham FS; Borchardt DB; Bui BH; Schreiner PR
    J Org Chem; 2005 Mar; 70(5):1881-4. PubMed ID: 15730313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation of naphthalene, azulene, and fulvalene from cyclic C5 species in combustion: an ab initio/RRKM study of 9-H-fulvalenyl (C5H5-C5H4) radical rearrangements.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 Sep; 111(38):9532-43. PubMed ID: 17711267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclopentadiene annulated polycyclic aromatic hydrocarbons: investigations of electron affinities.
    Gonzales JM; Barden CJ; Brown ST; Schleyer Pv; Schaefer HF; Li QS
    J Am Chem Soc; 2003 Jan; 125(4):1064-71. PubMed ID: 12537506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, X-ray structural, characterization, NBO and HOMO-LUMO analysis using DFT study of 4-methyl-N-(naphthalene-1-yl)benzene sulfonamide.
    Sarojini K; Krishnan H; Kanakam CC; Muthu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():657-67. PubMed ID: 22871549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of polycyclic aromatic hydrocarbons from bimolecular reactions of phenyl radicals at high temperatures.
    Constantinidis P; Schmitt HC; Fischer I; Yan B; Rijs AM
    Phys Chem Chem Phys; 2015 Nov; 17(43):29064-71. PubMed ID: 26457393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolytic hydrocarbon growth from cyclopentadiene.
    Kim DH; Mulholland JA; Wang D; Violi A
    J Phys Chem A; 2010 Dec; 114(47):12411-6. PubMed ID: 21050018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms in the pyrolysis of unsaturated chlorinated hydrocarbons: formation of benzene rings. 1. Quantum chemical studies.
    McIntosh GJ; Russell DK
    J Phys Chem A; 2013 May; 117(20):4183-97. PubMed ID: 23597165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical-molecule reactions for aromatic growth: a case study for cyclopentadienyl and acenaphthylene.
    Wang D; Violi A
    J Org Chem; 2006 Oct; 71(22):8365-71. PubMed ID: 17064006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.
    da Silva G; Bozzelli JW
    Phys Chem Chem Phys; 2012 Dec; 14(46):16143-54. PubMed ID: 23108328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the formation of naphthalene from the radical/π-bond addition between single-ring aromatic hydrocarbons.
    Comandini A; Brezinsky K
    J Phys Chem A; 2011 Jun; 115(22):5547-59. PubMed ID: 21557589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the benzene-naphthalene and naphthalene-naphthalene potential energy surfaces: DFT/CCSD(T) correction scheme.
    Rubes M; Bludský O; Nachtigall P
    Chemphyschem; 2008 Aug; 9(12):1702-8. PubMed ID: 18651623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the strength changes in C-H and C-C bonds for cation/pi complexes.
    Wang Y; Xu Z; Gao Y; Zhang L; Li H
    J Phys Chem A; 2009 Jun; 113(25):7097-102. PubMed ID: 19459607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue-shifting hydrogen bond in the benzene-benzene and benzene-naphthalene complexes.
    Hermida-Ramón JM; Graña AM
    J Comput Chem; 2007 Jan; 28(2):540-6. PubMed ID: 17186487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platinum(II)-catalyzed cyclization sequence of aryl alkynes via C(sp3)-H activation: a DFT study.
    Li ZF; Fan Y; DeYonker NJ; Zhang X; Su CY; Xu H; Xu X; Zhao C
    J Org Chem; 2012 Jul; 77(14):6076-86. PubMed ID: 22746201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of some reaction pathways active during cyclopentadiene pyrolysis.
    Cavallotti C; Polino D; Frassoldati A; Ranzi E
    J Phys Chem A; 2012 Apr; 116(13):3313-24. PubMed ID: 22394280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.